Loading...
Search for: silicate-minerals
0.006 seconds
Total 43 records

    Development of a structured monolithic support with a CNT washcoat for the naphtha HDS process

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Vol. 45, issue. 3 , May , 2014 , p. 887-895 Soghrati, E ; Kazemeini, M ; Rashidi, A. M ; Jozani, K. J ; Sharif University of Technology
    Abstract
    An acid treatment of the cordierite monolith followed by coating of the CNT onto it by means of catalytic decomposition of methane was performed. The resulting material utilized as the support for the CoMo catalyst. The characterization outcomes showed that the CNTs were distributed uniformly on the surface of the monolith leading to a high BET surface area and relatively good adhered mesoporous layer of CNTs. Moreover, the catalytic activity of the resulting catalysts determined in an HDS reaction of naphtha. It was concluded that the activity of the CoMo catalyst over the CNT coated monolithic support (FACNT) was higher than that of the CoMo deposited onto the acid-treated monolith and... 

    Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 15-16 , 2013 , Pages 3397-3402 ; 09552219 (ISSN) Kazemi, A ; Faghihi Sani, M. A ; Alizadeh, H. R ; Sharif University of Technology
    2013
    Abstract
    In this work, cristobalite crystallization and its effects on mechanical and chemical behaviour of injection moulded silica-based ceramic cores were investigated. In order to simulate casting process condition, the sintered samples at 1220 °C were also heated up to 1430 °C. Flexural strength test was carried out on both sintered and heat treated samples. Chemical resistance of the cores was evaluated by leaching the samples inside 43. wt% KOH solution at its boiling point. Phase evolution and microstructure were investigated by thermal analyses (DTA and DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM). Results showed that cristobalite was... 

    The effects of SiO 2 and K 2O on glass forming ability and structure of CaOTiO 2P 2O 5 glass system

    , Article Ceramics International ; Volume 38, Issue 4 , 2012 , Pages 3281-3290 ; 02728842 (ISSN) Ahmadi Mooghari, H. R ; Nemati, A ; Eftekhari Yekta, B ; Hamnabard, Z ; Sharif University of Technology
    2012
    Abstract
    The effects of SiO 2 and K 2O were investigated on the glass forming ability (GFA) and structural characteristics of CaOTiO 2P 2O 5 system. Differential thermal analyzer (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and 31P magic angle spinning NMR methods were applied for characterizations of the system. Unwanted crystallization in the initial three components base glass composition was observed by adding SiO 2 and crystalline phases such as TiP 2O 7, rutile (TiO 2) and cristobalite (SiO 2) were formed in it. The results showed that K 2O prevents crystallization of glasses and promotes the formation of glass. FT-IR and X-ray diffraction showed that the addition... 

    Comparison of two methods of iridium impregnation into HZSM-5 in the methanol to propylene reaction

    , Article Catalysis Communications ; Volume 16, Issue 1 , 2011 , Pages 150-154 ; 15667367 (ISSN) Papari, S ; Mohammadrezaei, A ; Asadi, M ; Golhosseini, R ; Naderifar, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, the effects of two methods of iridium impregnation into HZSM-5 on catalyst stability, selectivity for propylene and byproducts in the conversion of methanol to propylene (MTP) were investigated in a continuous flow isotherm fixed-bed reactor. XRD, BET surface area, NH 3-TPD and ICP-AES analytical techniques were applied to define the physical and chemical characteristics of zeolites. The reaction was conducted at 480°C and 1 bar with WHSV = 1 h -1, and with an equal weight percent of methanol and water in the feed. The results revealed that iridium impregnation into HZSM-5 powder led to enhanced propylene selectivity (8%) and catalyst stability while iridium impregnation into... 

    Adsorption of petroleum monoaromatics from aqueous solutions using granulated surface modified natural nanozeolites: Systematic study of equilibrium isotherms

    , Article Water, Air, and Soil Pollution ; Volume 217, Issue 1-4 , 2011 , Pages 611-625 ; 00496979 (ISSN) Seifi, L ; Torabian, A ; Kazemian, H ; Bidhendi, G. N ; Azimi, A. A ; Charkhi, A ; Sharif University of Technology
    Abstract
    Petroleum monoaromatics including benzene, toluene, ethylbenzene, and xylenes (BTEX) are among the notorious volatile organic compounds that contaminate water and soil. In this study, a surfactant- modified natural zeolite and its relevant granulated nanozeolites were evaluated as potential adsorbents for removal of petroleum monoaromatics from aqueous solutions. All experiments performed in batch mode at constant temperature of 20°C and pH of 6.8 for 48 h. The results revealed that the amount of BTEX uptake on granulated zeolites nanoparticles were remarkably higher than the parent micron size natural zeolite (in the order of four times). The isotherms data were analyzed using five models... 

    Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials

    , Article Strength of Materials ; Volume 47, Issue 5 , September , 2015 , Pages 740-754 ; 00392316 (ISSN) Haeri, H ; Khaloo, A ; Marji, M. F ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Rocks and rock-like materials frequently fail under compression due to the initiation, propagation and coalescence of the pre-existing microcracks. The mechanism of microcrack coalescence process in rock-like materials is experimentally and numerically investigated. The experimental study involves some uniaxial compression tests on rock-like specimens specially prepared from portland pozzolana cement, mica sheets and water. The microcrack coalescence is studied by scanning electron microscopy on some of the prepared thin specimens. It is assumed that the mica sheets play the role of microcracks within the specimens. Some analytical and numerical studies are also carried out to simulate the... 

    Semi-IPN carrageenan-based nanocomposite hydrogels: Synthesis and swelling behavior

    , Article Journal of Applied Polymer Science ; Volume 118, Issue 5 , 2010 , Pages 2989-2997 ; 00218995 (ISSN) Mahdavinia, G. R ; Marandi, G. B ; Pourjavadi, A ; Kiani, G ; Sharif University of Technology
    2010
    Abstract
    Inclusion of nano-clays into hydrogels is an efficient approach to produce nanocomposite hydrogels. The introduction of nano-clay into hydrogels causes an increase in water absorbency. In the present work, Nanocomposite hydro-gels based on kappa-carrageenan were synthesized using sodium montmorillonite as nano-clay. Acrylamide and meth-ylenebisacrylamide were used as monomer and crosslinker, respectively. The structure of nanocomposite hydrogels was investigated by XRD and SEM techniques. Swelling behavior of nanocomposite hydrogels was studied by varying clay and carrageenan contents as well as methylenebisacrylamide concentration. An optimum swelling capacity was achieved at 12% of sodium... 

    Equilibrium modeling of xylene adsorption on molecular sieves

    , Article Fluid Phase Equilibria ; Volume 298, Issue 1 , November , 2010 , Pages 54-59 ; 03783812 (ISSN) Tourani, S ; Baghalha, M ; Khorasheh, F ; Behvandi, A ; Sharif University of Technology
    2010
    Abstract
    The separation of xylene isomers is an important application in separation processes that is based on their adsorption properties on different adsorbents. In this work, the Price and Danner method was employed with a neural network to investigate the adsorption behavior of binary systems of p-xylene/m-xylene, p-diethyl benzene/m-xylene, and p-diethyl benzene/p-xylene and the ternary system of p-diethyl benzene/m-xylene/p-xylene at 130 and 175°C. The Redlich-Kister, Wilson, and NRTL models were used to determine the activity coefficients in the adsorbed phase. Comparison with experimental data from the literature indicated that the proposed thermodynamic model would best determine surface... 

    The study of prepration of blue V zircon pigment by using zircon and sulphuric acid

    , Article Innovative Processing and Manufacturing of Advanced Ceramics and Composites - 8th Pacific Rim Conference on Ceramic and Glass Technology, PACRIM 8, Vancouver, BC, 31 May 2009 through 5 June 2009 ; Volume 212 , JUL , 2010 , Pages 197-206 ; 10421122 (ISSN); 9780470876466 (ISBN) Riahi, M ; Faghihi Sani, M. A ; Sharif University of Technology
    2010
    Abstract
    Depending on the type of dopant metal, many kinds of zircon based pigments are produced and blue vanadium pigment is the most important one of them. In this study, blue zircon ceramic pigments were synthesized from intermediate product, resulting from decomposition of zircon sand with NaOH. In this regard, various amounts of sulfuric acid, water, NH4VO3 as colorant, NaF as mineralizer and extra quartz were added to the prepared Na 2ZrSiO5. Role of quartz was to omit the repercussions of presence of free zirconia in the composition. The main objective of this work is to assess various reactions at different temperatures during blue pigment synthesis. Phase analysis was done by X ray... 

    Effects of nucleation agent particle size on properties, crystallisation and microstructure of glass-ceramics in TiO2-ZrO2-Li 2O-CaO- Al2O3-SiO2 system

    , Article Advances in Applied Ceramics ; Volume 109, Issue 6 , 2010 , Pages 318-323 ; 17436753 (ISSN) Nemati, A ; Goharian, P ; Shabanian, M ; Afshar, A ; Sharif University of Technology
    2010
    Abstract
    The objective of this study was to evaluate the effects of P 2O5 particle size distribution on the crystalline phases and microstructure of lithium disilicate glass-ceramics derived from the TiO2-ZrO2-Li2O-CaO-Al2O 3-SiO2 system for dentistry applications. The samples were made via fusion and casting procedure. Crystallisation as well as the morphology and microstructure of the samples were investigated using X-ray diffraction, differential scanning calorimetric and scanning electron microscopy. The results showed that the crystallisation of the samples occurred in the range of 500-650°C. The main crystalline phase was lithium disilicate (Li2Si2O5) along with Lithium metasilicate (Li2SiO3),... 

    Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    , Article Renewable Energy ; Volume 35, Issue 1 , 2010 , Pages 226-231 ; 09601481 (ISSN) Hasani-Sadrabadi, M.M ; Dashtimoghadam, E ; Ghaffarian, S.R ; Hasani Sadrabadi, M.H ; Heidari, M ; Moaddel, H ; Sharif University of Technology
    2010
    Abstract
    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g -1, and 0.145 S cm -1, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the... 

    Synthesis of polypropylene/clay nanocomposites using bisupported Ziegler-Natta catalyst

    , Article Journal of Applied Polymer Science ; Volume 115, Issue 1 , 2010 , Pages 308-314 ; 00218995 (ISSN) Ramazani, S. A. A ; Tavakolzadeh, F ; Baniasadi, H ; Sharif University of Technology
    Abstract
    In this article, preparation of polypropylene/clay nanocomposites (PPCNC) via in situ polymerization is investigated. MgCl2/montmorillonite bisupported Ziegler-Natta catalyst was used to prepare PPCNC samples. Montmorillonite (MMT) was used as an inert support and reinforcement agent. The nanostructure of the composites was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Obtained results showed that silica layers of the MMT in these PPCNC were intercalated, partially exfoliated, and uniformly dispersed in the polypropylene matrix. Thermogravimetric analysis showed good thermal stability for the prepared PPCNC. Differential... 

    Modeling of catalyst deactivation in zeolite-catalyzed alkylation of isobutane with 2-butene

    , Article Chemical Engineering Science ; Volume 65, Issue 2 , 2010 , Pages 645-650 ; 00092509 (ISSN) Hamzehlouyan, T ; Kazemeini, M ; Khorasheh, F ; Sharif University of Technology
    Abstract
    The deactivation of solid acid catalysts in liquid phase alkylation of isobutane with 2-butene was investigated. Since under liquid phase conditions the alkylation reaction is severely diffusion limited, effects of diffusion on the rate of reaction and deactivation pathways were considered. In the present work, an attempt has been made to implement more appropriate assumptions in order to properly model catalyst deactivation in a mixed reactor. Accordingly, spatial variation of diffusivity in the pores of the catalyst was considered as a function of time on stream. The effect of the pore mouth plugging was also investigated and it was found that this phenomenon had a pronounced effect on the... 

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; 2017 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 104 , 2016 , Pages 243-252 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Akbari, A ; Sharif University of Technology
    Elsevier, B.V  2016
    Abstract
    Centrifugal microfluidics or the Lab on a CD (LOCD) has developed vast applications in biomedical researches and analyses. Fluid mixing is an application of the LOCD. In this paper, multiple centrifugal micromixers were simulated. Various parameters were originally presumed to have an effect on mixing performance. These parameters include inlet angle, angular velocity, cross-sectional profile, perpendicular length ratio and the number of channels in series. They were each analyzed through simulations. It was gathered that the inlet angle does not significantly affect the mixing quality. Increasing angular velocity steadily increases mixing quality for all geometries. The vertical triangular... 

    Study of temperature and velocity distribution of rarefied gas flow in micro-nano channels

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 1045-1050 ; 9780791843727 (ISBN) Ghezel Sofloo, H ; Shams, A ; Ebrahimi, R ; Sharif University of Technology
    Abstract
    This paper deals with simulation of transport phenomena in micro and nano pores. The number of cavities and the cavity radius were estimated by using Henry's law for adsorption of Argon onto ZSM-5 and NaX zeolites. This work showed both of zeolites have pores with average size less than 1 nm. Then with using micro- nano channel assumption instead of micro-nano pores, gas flow and heat transfer were investigated. Subsonic nonideal gas flow and heat transfer for different Knudsen number are investigated numerically using the Direct Simulation Monte Carlo method modified with a consistent Boltzamnn algorithm. The collision rate is also modified based on the Enskog theory for dense gas. It is... 

    Joint approximate diagonalization of eigenmatrices as a high-throughput approach for analysis of hyphenated and comprehensive two-dimensional gas chromatographic data

    , Article Journal of Chromatography A ; Volume 1524 , 2017 , Pages 188-201 ; 00219673 (ISSN) Zarghani, M ; Parastar, H ; Sharif University of Technology
    Abstract
    The objective of the present work is development of joint approximate diagonalization of eigenmatrices (JADE) as a member of independent component analysis (ICA) family, for the analysis of gas chromatography-mass spectrometry (GC–MS) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC × GC–MS) data to address incomplete separation problem occurred during the analysis of complex sample matrices. In this regard, simulated GC–MS and GC × GC–MS data sets with different number of components, different degree of overlap and noise were evaluated. In the case of simultaneous analysis of multiple samples, column-wise augmentation for GC–MS and column-wise super-augmentation... 

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 116 , 2017 , Pages 9-16 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Newtonian and generalized Newtonian reacting flows in serpentine microchannels: pressure driven and centrifugal microfluidics

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 251 , January , 2018 , Pages 88-96 ; 03770257 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a comprehensive 3D numerical simulation of reacting flows in micro scale dimension through centrifugal, or Lab-On-a-CD (LOCD), and pressure-driven, or Lab-On-a-Chip (LOC) devices. Three different serpentine channel configurations (rectangular, triangular and sinusoidal) are investigated. In these configurations, two chemical species enter from two inlets and according to an irreversible chemical reaction, start yielding other species. Both Newtonian and generalized Newtonian fluids are considered in the simulations and the results are compared for both LOC and LOCD devices. Besides, the effects of different parameters such as the aspect ratio of channels’ cross section,... 

    Inertial particle focusing in serpentine channels on a centrifugal platform

    , Article Physics of Fluids ; Volume 30, Issue 1 , 2018 ; 10706631 (ISSN) Shamloo, A ; Mashhadian, A ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated...