Search for: silicones
0.012 seconds
Total 531 records

    Design and Simulation of all Optical/hybrid Neural Networks

    , M.Sc. Thesis Sharif University of Technology Marzban, Mahmood Reza (Author) ; Khavasi, Amin (Supervisor)
    Analog computing has emerged as a promising candidate for Neural networks' implementation due to its high Interconnectivity, high bandwidth, parallel computing, high-speed processing, and low power consumption. Artificial Neural Networks have a wide range of applications; however, the Implementation of complicated Neural Networks on traditional computers would encounter two fundamental obstacles: limited processing speed and non-optimal energy consumption. This thesis's primary focus is on designing and simulating a whole-passive planar Optical neural network(ONN) based on silicon photonics technology. Firstly, the concept of ONN is studied using some lately proposed work. The device is... 

    The Effect of Nano-TiO2 and CaF2 Additives on Formulation and Properties of SiO2-Li2O Glass-Ceramics

    , M.Sc. Thesis Sharif University of Technology Gol, Saba (Author) ; Nemati, Ali (Supervisor)
    The goal of the present study is to analyze the effect of CaF2 and nano-TiO2 as additives on formulation and properties of common dental glass-ceramics. To achieve the goal, a glass system based on SiO2-Al2O3-Li2O-K2O-P2O5-ZnO-ZrO2 was considered to produce glass-ceramic samples and the additives, nano-TiO2 and CaF2, with the 0.5, 1, and 1.5 %Wt was added to the system. After the melting process, the glass samples poured in the water and ferrite was produced. In the next step, the ferrite was milled and pressed. In the heat treatment step, the samples were treated in the temperature range of 650-850°C in order to gain lithium disilicate glass-ceramics. In the last step, the chemical... 

    Using FSP Method to Create Composite and Surface Foam with Distribution Gradient of Particles and Porosity as FGM and Study of Physical and Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Karimi, Mahdi (Author) ; Akbarzadeh, Abbas (Supervisor)
    Nowadays, the tendency to use Al/SiC composites with FGM structure has increased in the automotive and aerospace industries, because in this type of composite, the properties can be gradually changed in the direction of thickness. For example, one composite surface is used as a wear-resistant or high-temperature-resistant coating, and the other surface can be welded, has high thermal conductivity, or has a good toughness. In recent years, methods have been used to make surface composites, most of which are in the molten state and at high temperatures. In this case, the reactions between the compounds can not be easily controlled and the possibility of the formation of undesirable or... 

    Thermoelectric Properties of Graphene-Based Material

    , Ph.D. Dissertation Sharif University of Technology Karami Taheri, Hossein (Author) ; Faez, Rahim (Supervisor)
    In this thesis, the thermal and thermoelectric properties of graphene-based nanostructures are numerically investigated. The transport parameters, including Seebeck coefficient, electrical conductance, and thermal conductance are obtained as well as the thermoelectric figure of merit. The Hamiltonian matrix is set up using a third nearestneighbor atomistic tight-binding approximation and the dynamical matrix using a 4th nearest neighbor force constant approximation. Both ballistic and diffusive regimes are considered in this work. For transport investigation, the Landauer formula and the nonequilibrium Green’s function techniques are used. The role of temperature, geometrical parameters,... 

    Improvement of Polymer Composites Thermal Conductivity by Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Kazemi Ranjbar, Sina (Author) ; Nouri Broujerdi, Ali (Supervisor)
    The new generation of electronic devices including 5G internet, wearable electronics, LED optoelectronics or cloud computing devices have higher power density as their computing power increases and their sizes reduce. The increase in power density leads to higher heat generation and consequently higher operating temperature which reduces their lifetime and reliability. In recent years development of novel solutions for electronic cooling has been persued. Thermal interface material that inserted between heat source and heat sink is the main component in electronic cooling. These materials consists of a polymeric base that filled with highly thermally conductive solid particles. By emergence... 

    Improvement of Mechanical Properties of a Mg-Zn alloy using the Micro Alloying Elements

    , M.Sc. Thesis Sharif University of Technology Cheraghi Heyvedi, Hamid (Author) ; Karimi Taheri, Ali (Supervisor)
    The development of new wrought magnesium alloys for automotive industry has increased in recent years due to their high potential as structuralmaterials for low density and high strength/weight ratio demands. However, the poor mechanical properties of the magnesium alloys have led tosearch a new kind of magnesium alloys for better strength and ductility.In this research,a new type of magnesium alloy based on Mg-Zn-Si-Ca system has been developed using the permanent gravity casting process. For comparison, an alloy without Siby the same method was also produced. The effects of trace Si addition on the microstructure and mechanical properties in magnesium alloy with composition of... 

    Mapping and Scheduling Applications onto Multi-Core Chip-Multiprocessors in Dark-Silicon Era

    , M.Sc. Thesis Sharif University of Technology Hoveida, Mohaddeseh (Author) ; Sarbazi Azad, Hamid (Supervisor)
    Growing transistor counts, limited power budgets, and the breakdown of voltage scaling are currently conspiring to create a utilization wall that limits the fraction of a chip that can run at full speed at one time. This concept is the basis of the Dark Silicon definition. To address this issue, it is needed a structure to guaranty Limited power budget and obtain sufficient flexibility and performance for different applications with variety communication needs. Regarding to this structure, our aim is to present a platform for Networks-on-Chip that uses clustering and resource sharing among cores. Moreover, as task mapping on processing elements in NOCs is one of the most effective way to... 

    Modeling and Simulation of a High Power Photoconductive Semiconductor Switch (PCSS)

    , M.Sc. Thesis Sharif University of Technology Hemmat, Zahra (Author) ; Faez, Rahim (Supervisor)
    There are a wide variety of light-triggered switches. Photoconductive semiconductor switches (PCSSs) have been investigated intensively for many applications owing to their unique advantages over other switches. The advantages of PCSSs make them a perfect choice for many important applications where high switching accuracy and high-power capability are required. Photoconductive switches are fabricated from a variety of semiconductors, including silicon carbide (SiC), gallium arsenide (GaAs) and gallium nitride (GaN). In Photoconductive semiconductor switches (PCSSs) the switching mechanism is initiated by optical illumination and laser source controls the flow of current. In the off or... 

    Analysis of Ratcheting in Elastic-plastic Behavior of Li-ion Battery Electrodes

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Ali (Author) ; Naghdabadi, Reza (Supervisor)
    Among the various materials, silicon anodes have the highest lithium absorption in lithium-ion batteries. But this high lithium absorption capacity can cause 300 percent volume expansion and large stresses. Experimental observations show that charge and discharge cycles may cause plastic deformation in some parts of the electrode particle. On the other hand, there is a possibility of a ratcheting phenomenon due to changing in elastic properties of the electrode material during the charging and discharging processes. However, this phenomenon has not been reported for silicon spherical electrode particles yet.This study aims to model the elastic-plastic behavior of silicon spherical electrode... 

    Silicon Vacancy in 4H-SiC: Many-body Electronic Structure

    , M.Sc. Thesis Sharif University of Technology Najafi Ivaki, Moein (Author) ; Vesaghi, Mohammad Ali (Supervisor)
    The silicon vacancy in silicon carbide is a strong emergent candidate for applications in quantum information processing. 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states. Electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) investigations suggest that silicon vacancy point defects in SiC possess properties similar to those of the NV center in diamond. We provide a new theoretical frame to explain a wider range of experimental results. Employing a proposed generalized Hubbard model, with the help of electronic structure programs, DFT, second quantization, and various computational approaches, we obtain new... 

    Investigation of Thermal Stress Effect on The Performance of Thin Film Solar Cells Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Namvar, Arman (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Thin film solar cells have low efficiency compared to crystalline silicon solar cells; however, they are low-cost and flexible. In manufacturing these solar cells, thin films are deposited at high temperatures (higher than 200℃) on a thick metal, plastic, or glass substrate using sputtering and plasma enhanced chemical vapor deposition (PECVD) methods. Since the thin films and substrate have different thermal expansion coefficients, cooling the system from deposition temperature to room temperature induces thermal residual stresses in both the films and substrate. In addition, these stresses, especially those induced in the amorphous silicon layer can change the carrier mobility and band gap... 

    The Effect of Mn on Microstructure and Mechanical Properties on Splat Cooled Al-20Si-5Fe-3Cu-1Mg Alloy

    , M.Sc. Thesis Sharif University of Technology Moazzeni Pour, Pooyan (Author) ; Davami, Parviz (Supervisor)
    In this research ,Al-20Si-5Fe-3Cu-1Mg-XMn alloys were produced by gas atomizing and melt spinning processes. Microstructure and growth morphology of powder and ribbons were investigated using optical microscopy , scanning electron microscopy. powders were hot pressed at 400ºC/250Mpa and microstractural variations, mechanical properties were evaluated after consolidation. Results show that relatively high cooling rate in gas-atomized powders lead to refinement of microstructure and formation of semi-equilibrium δ intermetallic phase . As the powder particle size decrease , the growth morphology changes from primary silicon + euthectic to euthectic + primary dendritic aluminum . Mn changed the... 

    Formation of Silicon Nanoparticles From Porous Silicon for LED Application

    , M.Sc. Thesis Sharif University of Technology Moeini Rizi, Mansoure (Author) ; Taghavinia, Nima (Supervisor)
    Semiconductor nanocrystals act as a good luminescent layer in new coming electroluminescence devices. Research on luminescent devices based on nanocrystals such as silicon nanoparticles, has been progressed over the last decades. In this research, silicon nanoparticles have been synthesized from porous silicon layer that was created through an electrochemical process. The effective luminescent parameters like electrolyte contents, current density and reaction time have been investigated. The maximum luminescence has been captured when the current density and reaction time were adjusted at 30 and 20 min, respectively. In addition, volume ratio Ethanol:HF 14:8 was another modified... 

    Investigation of Si3n4 Nano Particle Addition on the Hardening Behavior of Anodized Coated 1050 Aluminum Alloy

    , M.Sc. Thesis Sharif University of Technology Mohammadi Dehcheshmeh, Iman (Author) ; Afshar, Abdollah (Supervisor)
    In the present study, it has been tried out to increase the hardness and wear resistance of anodized aluminum coating byadding Si3N4 nanoparticles to the anodizing bath and making a composite coating. In order to investigate the influence of other effective parameters on the properties of anodized coating before the compositing process, hardness and thickness were optimized in the Sulphoric/oxalic bath using design of experimental method (central composite design). The properties of these coatings are dependent on various parameters among which time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were considered in the present study. Analysis of... 

    Study of Microstructure and Hot Deformation Behavior of Aluminum Nanocomposites Reinforced with SiC Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Mobarhan Bonab, Mohammad Ali (Author) ; Simchi, Abdolreza (Supervisor)
    Hot deformation behavior of Al-SiC nanocomposites was investigated in this study. Aluminum powders with mean size of 60 micron and SiC nanopowders (mean size of 45nm) in amounts of 1 and 2 volume percents, as reinforced part, were mixed and milled for 40 hours by planetary ball mill. After degassing at 450 oC for 1 hour, milled powders were pressed into Aluminum cans (in Argon atmosphere) and then hot extruded. Extrusion ratio was 1:14. High density billets (with 98% of theoretical density) were produced because of that high extrusion ratio. TEM microstructure studies showed that fine distribution of reinforcements and Aluminum Oxides obtained via this procedure. Hardness and Uniaxial... 

    Fatigue Behavior of Al-SiC Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Ghasemi Yazdabadi, Hassan (Author) ; Simchi, Abdolreza (Supervisor) ; Ekrami, Ali Akbar (Supervisor)
    Recently, mechanical properties of advanced materials such as nanostructured and ultra-fine materials and especially nanocomposites were studied by lots of researcher. In this study, fatigue behavior of Al-SiC nanocomposites is observed. Ultra-fine grains Al matrix nanocomposites reinforced with 50 nm diameter SiC nanoparticles were produced by milling and hot extrusion. For this purpose, pure aluminum powder was mixed with 2, 4 and 6 Vol. % of SiC nanoparticles and then milled by planetary mill. The milled powder then were degased in an Argon atmosphere furnace, cold pressed and then hot extruded. Closed die-hot forging was used with about 18.8% reduction in cross section in order to... 

    Roduction of Solar Grade Silicon by Thermal Refining of Industrial Grade Silicon

    , M.Sc. Thesis Sharif University of Technology Fazlali, Reza (Author) ; Yoozbashizadeh, Hossein (Supervisor)
    The photovoltaic (PV) industry is in rapid growth and a large supply of PV feedstock materials must be provided to maintain this growth. Since silicon is still the dominant material for the fabrication of solar cells, low-cost solar-grade silicon (SoG-Si) feedstock is demanded. The most cost-effective and direct approach for producing SoG-Si is to purify and upgrade metallurgical-grade silicon. The major impurities in silicon are Al, Fe and Ca. other impurities present are Cu, Ti , Zn, Ni, Cr, Mn, Cd, B and P. In this study The effects of the acid leaching process parameters, including the particle size of silicon, the acid type (HCl, HNO3, H2SO4, and their combination), tmepreture and the... 

    Investigation of the Effects of Oxide films on the Mechanical Properties of Al-A356.2 alloy and Simulation of Oxide film Entrapment during the Mold Filling

    , Ph.D. Dissertation Sharif University of Technology Eisaabadi Bozchaloei, Ghasem (Author) ; Davami, Parviz (Supervisor) ; Varahram, Naser (Co-Advisor)
    The present study aimed to investigate the effects of old and young oxide films on the mechanical properties and reliability of Cast Al A356.2 alloy. The results indicate that the presence of oxides within the microstructure of the alloy decreased the tensile properties of the alloy and increased their scattering. Beside this, the presence of the oxides decreased the reliability of the alloy. The results showed that the presence of double oxide films (especially old oxides) decreased the Weibull modulus of tensile properties and resulted in bi-Weibull distribution in tensile properties of the alloy. The results also indicate that using of a clean melt (with high quality), is vital for... 

    Surface and Interface Effects on the Elastic Fields of an Edge Dislocation Inside a Silicon Nanotube with Thin Siox Coating

    , M.Sc. Thesis Sharif University of Technology Azizi, Pegah (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    The exact analytical elastic fields within a double-walled silicon nano-tube with a thin layer of SiOx coating associated with surface/ interface effects as well as the classical theory of elasticity due to the presence of an edge dislocation with an arbitrary Burger’s vector and position inside of the silicon is determined via complex potential function method. Stress contours within surface elasticity and classical theory are given, and both theory results are compared. Then, the effects of surface Lamé Constants, magnitude and direction of Burger’s vector, shear modulus, nano-tube size, and position of the edge dislocation on the distribution of stress components are illustrated, and the... 

    Lifetime Assessment of Silicone Rubber Insulators Employing the Partial Discharge Measured Data under Accelerated Aging Test

    , M.Sc. Thesis Sharif University of Technology Abedini Livari, Ali (Author) ; Vakilian, Mehdi (Supervisor)
    Due to outstanding advantages of polymeric insulators such as: hydrophobicity, impact resistance and lower weight, their application in the high voltage transmission and distribution lines is increased significantly, in recent years. The most important feature of these insulators is their hydrophobicity. Contamination and aging are some of the factors that weaken this important feature and reduce the reliability of these insulators. Due to aging effects partial discharges start on the surface of the composite insulators and increase by impact of external factors. This thesis examines the occurrence of partial discharge signals on polymeric insulators under: varying amounts of contamination,...