Search for: silicones
0.009 seconds
Total 531 records

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites [electronic resource]

    , Article Journal of Materials & Design ; December 2013, Volume 52, Pages 881–887 Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6 vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4 vol%; then they... 

    Investigation of hydrogen sensing properties and aging effects of Schottky like Pd/porous Si

    , Article Journal of Sensors and Actuators B: Chemical ; Volume 146, Issue 1 , 8 April , 2010 , PP. 53–60 Razi, F. (Fatemeh) ; Iraji Zad, A. (Azam) ; Rahimi, F. (Fereshteh) ; Sharif University of Technology
    We prepared porous silicon samples coated by continuous palladium layer in electroless process. Scanning electron microscopy (SEM) showed cauliflower-shape Pd clusters on the surface. I–V curves of Schottky like Pd/porous Si samples were measured in air and in hydrogen. These measurements showed a metal–interface–semiconductor configuration rather than an ideal Schottky diode. Variations of the electrical current in the presence of diluted hydrogen at room temperature revealed that the samples can sense hydrogen in a wide range of concentration (100–40,000 ppm) without any saturation behavior. Hydrogen sensing properties of these samples were investigated at room temperature for a duration... 

    Multi-scale modeling of edge effect on band gap offset in polygonal cross-section silicon nanowires

    , Article Computational Materials Science ; Volume 79 , November , 2013 , PP. 262–275 Khoei, A. R. (Amir Reza) ; DorMohammadi, H ; Aramoon, A ; Sharif University of Technology
    The band gap offset is an effect of coordination numbers (CNs) of atom reduction at the edge of transversal cross-section of Silicon nanowires (SiNWs). In this paper, a hierarchical multi-scale technique is developed to model the edge effect on the band gap shift of SiNWs since the geometric effect is dominant in the energy gap due to the appearance of strain in the self-equilibrium state. The multi-scale model is performed based on the molecular dynamics approach and finite element method for the micro- (atomistic) and macro-scale levels, respectively. The Cauchy–Born (CB) hypothesis is used to relate the atomic positions to the continuum field through the deformation gradient. Finally, the... 

    Validity and size-dependency of cauchy–born hypothesis with Tersoff potential in silicon nano-structures

    , Article Computational Materials Science ; Volume 63 , October , 2012 , PP. 168–177 Khoei, A. R. (Amir Reza) ; Dormohammadi, H. (Hossein) ; Sharif University of Technology
    One of the most popular constitutive rules that correlate the continuum and atomic properties in multi-scale models is the Cauchy–Born (CB) hypothesis. Based on this constitutive law of continuum media, it assumes that all atoms follow the deformation subjected to the boundary of crystal. In this paper, the validity and failure of CB hypothesis are investigated for the silicon nano-structure by comparison of the continuum and atomic properties. In the atomistic level, the stresses and position of atoms are calculated using the molecular dynamics (MD) simulation based on the Tersoff inter-atomic potential. The stresses and strains are compared between the atomistic and continuous media to... 

    Voltage-frequency planning for thermal-aware, low-power design of regular 3-D NoCs

    , Article Proceedings of the IEEE International Conference on VLSI Design ; 2010 , p. 57-62 ; ISSN: 10639667 ; ISBN: 9780769539287 Arjomand, M ; Sarbazi-Azad, H ; Sharif University of Technology
    Network-on-Chip combined with Globally Asynchronous Locally Synchronous paradigm is a promising architecture for easy IP integration and utilization with multiple voltage levels. For power reduction, multiple voltage-frequency levels are successfully applied to 2-D NoCs, but never with a generic approach to 3-D counterparts; in which low heat conductivity of insulator layers makes high dense temperature distribution at layers away from heat sink. In this paper, a thermal-aware methodology for regular 3-D NoCs based on multiple voltage levels is proposed. Given an application task graph, this methodology determines an efficient mapping of tasks onto network tiles, considering inherent... 

    Fabrication of a novel six DOF thermal nanopositioner by using bulk micromachining process

    , Article IEEE International Conference on Mechatronics, ICM 2011 - Proceedings ; 2011 , pp. 702-707 ; ISBN: 9781612849836 Ghaemi, R ; Pourzand, H ; Alasty, A ; Akrami, S .M. R ; Sharif University of Technology
    In this paper, a novel microfabrication process of a six DOF thermal compliant nanopositioner is presented. The microfabrication process was based on bulk micromachining process. By using this process some important operational restrictions which are usually created by surface micromachining were removed. Moreover, this novel process does not need SOI wafers and needs only ordinary wafers. Therefore, it makes microfabrication process cheaper than surface micromachining processes where SOI wafer should be used. This method is completely appropriate for microactuators which have 120 degree misalignment. Finally, a primary test by using interferometer method was used to test connection of... 

    Analysis and simulation of ring resonator silicon electro-optic modulators based on PN junction in reverse bias

    , Article Optical Engineering ; Vol. 53, issue. 12 , 2014 ; ISSN: 00913286 Jafari, O ; Akbari, M ; Sharif University of Technology
    The theory of silicon optical modulators of ring resonators based on PN diode in reverse bias is primarily discussed. It secondarily provides a full-featured simulator to investigate the behavior of such modulators. Wave equation for ring structure will be solved by using the conformal transformation method and the matrix method as it was used to analyze bent planar optical waveguides. Power coupling between ring and straight waveguides will be calculated by coupled theory of nonparallel waveguides based on experimental results. The time response demonstrates the capability of this device to operate correctly at up to 10 Gbs-1 bitrate, and the frequency spectrum analysis of device shows a >... 

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:... 

    Fine-grained architecture in dark silicon era for SRAM-based reconfigurable devices

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Vol. 61, Issue. 10 , 2014 , Pages 798-802 ; ISSN: 15497747 Yazdanshenas, S ; Asadi, H ; Sharif University of Technology
    In this brief, we present a fine-grained dark silicon architecture to facilitate further integration of transistors in static random access memory-based reconfigurable devices. In the proposed architecture, we present a technique to power off inactive configuration cells in nonutilized or underutilized logic blocks. We also propose a routing circuitry capable of turning off the configuration cells of connection blocks (CBs) and switch boxes (SBs) in the routing fabric. Experimental results carried out on the Microelectronics Center of North Carolina benchmark show that power consumption in configuration cells of lookup tables, CBs, and SBs can, on average, be reduced by 27%, 75%, and 4%,... 

    Study the effect of architectural modification on fracture behavior of Al-DRA composite

    , Article Mechanics of Advanced Materials and Structures ; Vol. 21, issue. 8 , 2014 , Pages 662-668 ; ISSN: 15376494 Jamali, M ; Khalili, S ; Bagheri, R ; Simchi, A ; Sharif University of Technology
    An architectural modification method was utilized to improve fracture toughness of discontinuously reinforced aluminum (DRA) composites. Al-DRA composites having a structure similar to that of reinforced concrete were fabricated. The number of reinforcing DRA rods within Al matrix and volume fraction of SiC particles in DRA were altered to evaluate their effect on fracture behavior of these materials. It was found that architectural modification does not have any destructive influence on elastic modulus and yield strength of the composite. Moreover, the success of this method on toughness improvement strongly depends on the occurrence of debonding between Al and DRA regions upon loading  

    Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    , Article Journal of Alloys and Compounds ; Vol. 598 , 2014 , Pages 236-242 ; ISSN: 09258388 Zarghami, V ; Ghorbani, M ; Sharif University of Technology
    Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni-SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing... 

    Investigating the effects of vibration method on ultrasonic-assisted drilling of Al/SiCp metal matrix composites

    , Article Robotics and Computer-Integrated Manufacturing ; Vol. 30, issue. 3 , 2014 , Pages 344-350 ; ISSN: 07365845 Kadivar, M. A ; Akbari, J ; Yousefi, R ; Rahi, A ; Nick, M. G ; Sharif University of Technology
    Preciseness and finished surface quality are the significant factors of final products, especially in a number of drilling processes. Burr is usually considered a negative outcome in assembly procedures. One way to reduce or remove burr and improve surface roughness in metal cutting is to employ ultrasonic vibration in the drilling process. In this paper, the effects of ultrasonic vibration on burr size reduction, drilling force and surface roughness with two different vibration systems are investigated. To this end, two vibration structures were built, one to excite the workpiece (the workpiece vibration system) and the other to vibrate the tool (the tool vibration system). Besides, the... 

    Design and analysis of an innovative light tracking device based on opto-thermo-electro-mechanical actuators

    , Article Microelectronic Engineering ; Vol. 119 , May , 2014 , pp. 37-43 ; ISSN: 01679317 Mahmoudpour, M ; Zabihollah, A ; Vesaghi, M ; Kolbadinejad, M ; Sharif University of Technology
    This research presents an application of transparent lanthanum-modified lead zirconate titanate (PLZT) materials in micro light source tracking device, which is designed to function as a result of irradiation, having neither lead wires nor electric circuits. The focus of the paper is on the analytical and finite element investigation into ultraviolet photo-induced multi-physics responses of PLZT photocantilever and a comparison of the measured bending displacement to check the feasibility of these materials in design of micro light source tracking device. The finite element formulation of the transverse deflection for multi-physics analysis of PLZT ceramics by including the photovoltaic and... 

    Preparation and corrosion resistance of pulse electrodeposited Zn and Zn-SiC nanocomposite coatings

    , Article Applied Surface Science ; Vol. 300 , May , 2014 , pp. 1-7 ; ISSN: 01694332 Sajjadnejad, M ; Mozafari, A ; Omidvar, H ; Javanbakht, M ; Sharif University of Technology
    Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic... 

    The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum

    , Article Materials Science and Engineering A ; Vol. 602, issue , April , 2014 , p. 110-118 ; ISSN: 09215093 Sarkari Khorrami, M ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    The 1050 aluminum sheets are severely deformed by two passes of the constrained groove pressing (CGP) process to obtain the strain of 2.32. Friction stir processing (FSP) is then performed on these specimens at two conditions of with and without SiC nanoparticles. Microhardness measurements indicate that in the state of FSP without any particle, the microhardness of stir zone is decreased due to the recrystallization and grain growth occurrence because of high stored strain energy in the CGPed specimens. In order to enhance the mechanical properties of the stir zone, SiC nanoparticles are used during FSP. Also, the effect of FSP pass number on the distribution of nanoparticles is... 

    Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 91-99 ; ISSN: 02578972 Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive and aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings can be applied to combustion chamber to reduce fuel consumption and pollutions and also improve fatigue life of components. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS. The results of stress-strain hysteresis loop are validated by an out of phase thermo-mechanical fatigue test. Different thicknesses from 300 to 800. μm of top coat and also roughness of the interfaces are... 

    A temperature-related boundary Cauchy-Born method for multi-scale modeling of silicon nano-structures

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Vol. 378, issue. 5-6 , 2014 , pp. 551-560 ; ISSN: 03759601 Khoei, A. R ; Dormohammadi, H ; Aramoon, A ; Sharif University of Technology
    The surface, edge and corner effects have significant influences in the electrical and optical properties of silicon nano-structures. In this paper, a novel hierarchical temperature-related multi-scale model is presented based on the boundary Cauchy-Born method to investigate not only the surface but also the edge and corner effects in thermal properties of diamond-like structures such as silicon nano-structures at finite temperature. A combined finite element method and molecular dynamics are respectively employed in macro- and micro-scale levels. The temperature-related Cauchy-Born rule is applied using the Helmholtz free energy, as the energy density of equivalent continua relating to the... 

    Sintering characterizations of Ag-nano film on silicon substrate

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 342-346 ; ISSN: 10226680 ; ISBN: 9783037859070 Keikhaie, M ; Akbari, J ; Movahhedi, M. R ; Alemohammad, H ; Sharif University of Technology
    Nowadays, thin films have many applications in every field. So, in order to improve the performance of thin film devices, it is necessary to characterize their mechanical as well as electrical properties. In this research work we focus on the development of a model for the analysis of the mechanical and electrical properties of silver nanoparticles deposited on silicon substrates. The model consists of inter-particle diffusion modeling and finite element analysis. In this study, through the simulation of the sintering process, it is shown that how the geometry, density, and electrical resistance of the thin film layer are changed with sintering conditions. The model is also used to... 

    Superconducting compact coplanar waveguide filters based on quarter-wavelength spiral resonators with suppressed slot-line mode

    , Article Electromagnetics ; Volume 34, Issue 1 , 2 January , 2014 , Pages 12-18 ; ISSN: 02726343 Javadzadeh, S. M. H ; Bruno, A ; Farzaneh, F ; Fardmanesh, M ; Sharif University of Technology
    Quarter-wavelength superconducting spiral resonators have been used to realize a coplanar waveguide bandpass filter and bandstop filter around the center frequency of 6 GHz. These compact coplanar waveguide filters have been made from 300-nm-thick NbTiN thin film on a 525-μm-thick silicon substrate. The bandpass filter is a six-pole Chebyshev filter with two zero transmissions due to nonadjacent coupling in its structure. Accurately microfabricated air-bridges have been used to suppress the undesired slot-line mode in this filter. The bandstop filter is a very simple two-pole structure that used wire bonding to suppress the slot-line mode. Measurements have been done at a temperature of 4.2... 

    Hot extrusion process modeling using a coupled upper bound-finite element method

    , Article Journal of Manufacturing Processes ; Vol. 16, issue. 2 , 2014 , pp. 233-240 ; ISSN: 15266125 Hosseinabadi, H. G ; Serajzadeh, S ; Sharif University of Technology
    A thermo-mechanical model has been developed for modeling of hot extrusion processes. Accordingly, an admissible velocity field was first proposed by means of stream function method and then, extrusion pressure as well as temperature variations within the metal and the die were predicted employing a combined upper bound and Petrov-Galerkin finite element analysis. In order to evaluate the model predictions, hot extrusion of AA6061-10%SiCp was considered under both isothermal and non-isothermal conditions and the predicted force-displacement diagrams under various extrusion conditions were compared with the experimental ones and reasonable consistency was found between the two sets of results...