Loading...
Search for: single-layer
0.006 seconds
Total 50 records

    Temperature-Dependent Multiscale Simulation of Single Layer Graphene Sheet in Large Deformation

    , M.Sc. Thesis Sharif University of Technology Tanhadoust, Amin (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Co-Advisor)
    Abstract
    In this study, two multiscale hierarchical atomisyic/molecular dynamics (MD)–finite element (FE) coupling methods are proposed to illustrate the influence of temperature on mechanical properties of SLGS in large deformation. The Tersoff interatomic potential is implemented, in addition, the Nose-Hoover thermostat and local harmonic approximation are employed to adjust the fluctuation of temperature in CB and MD, respectively. The atomic nonlinear elastic parameters are obtained via computing second-order derivative of Representative atom’s energy and RVE’s strain energy density with respect to deformation criterions (deformation gradient and Green strain tensor). To bridge between atomistic... 

    Behavior of a Single-layer Latticed Cylinder Steel Shell with a Long Span under Wind Load

    , M.Sc. Thesis Sharif University of Technology Daghestani, Shahrooz (Author) ; Khalu, Alireza (Supervisor)
    Abstract
    Single-layer steel grid shell structures are a good structural solution to new buildings by specific properties that are required by long-span structures and provide at the same time the opportunity to produce immense verity of design shapes and free form architecture; complex curved surfaces expect to be covered with low weight material. A grid shell is essentially a shell with its structure concentrated into individual linear element in relatively thin grid compared to the overall dimension of the grid shell. This research investigates single-layer grid structures with emphasis on design of load details. The application of single-layer for transparent structures enhances use of glazed... 

    Numerical Modelling of Armour Layer Stability in Low-crested Breakwaters Using Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM)

    , Ph.D. Dissertation Sharif University of Technology Sarfaraz, Mohammad (Author) ; Pak, Ali (Supervisor)
    Abstract
    Rubble mound low-crested breakwaters protect the structures and ships in the port against wave attacks. Due to the overtopping, these structures provide a more attractive landscape and helps preserve the port's environment. Stability of low-crested breakwaters relies on the stability of the armor layer against the wave action, requiring the choice of the appropriate diameter for the armour blocks. For cubic armours that are of interest to the designers, there is currently no design relationship, and they inevitably use formulae specified for high-crested breakwaters that may not be in the safe side. The conventional method for determining the required armour diameter for a breakwater is... 

    Probabilistic Evaluation of Nonlinear Behavior of Fixed- and Flexible-Base Shear Buildings

    , M.Sc. Thesis Sharif University of Technology Abtahi, Shaghayegh (Author) ; Ghannad, Mohammad Ali (Supervisor) ; Mahsoli, Mojtaba (Supervisor)
    Abstract
    This thesis revisits the effect of dynamic soil-structure interaction (SSI) on multistory buildings with a probabilistic approach. For this purpose, the relationship between the strength demands of fixed- and flexible-base multi-degree-of-freedom (MDOF) systems, or strength reduction factor thereof, with that of fixed- and flexible-base equivalent single-degree-of-freedom (eSDOF) systems is investigated considering prevailing uncertainties. To this end, Monte Carlo sampling analysis is employed in which a suite of nearly 2000 records are utilized to properly quantify the ground motion uncertainty. The soil-structure system is modeled by the sub-structure method. The uncertainty in the... 

    Inter-Laminar Stress Analysis in Boundary Layer Region of Symmetrically Laminated Plates Under Torsion

    , M.Sc. Thesis Sharif University of Technology Jamalimehr, Amin (Author) ; Nosier, Asghar (Supervisor)
    Abstract
    In the present research an analytical solution is studied for interlaminar stresses in boundary layer region of symmetric composite laminates under torsion. Based on geometrical and physical grounds the existing displacement field in literature is simplified in order to accommodate to torsion of symmetric laminates. Displacement field is divided to global and local parts. The solution procedure consists of combined equivalent single layer theories and layerwise theory of Reddy. ESL theories are more computationally economic while LWTs are considerably accurate in determining local behavior of plate. Further, based on second order shaer deformation theory and Ritz approximate variational... 

    Initial Blank Design of Deep Drawn Single Layer Composite parts Using Inverse Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Zamanian, Hashem (Author) ; Assempour, Ahmad (Supervisor)
    Abstract

    The inverse finite element method was derived from ideal forming to predict the development blank of sheet forming process and the strain distribution according to the geometry of final product. In this project we present an inverse finite element method to obtain strain and stress distribution in final shape and design initial blank of deep drawing process. The procedure is as follows: First, strain distribution in deep drawn part is estimated by kinematics. Then by using Hill’s anisotropic plasticity and according to the associated plastic flow rule, stress distribution is obtained in deep drawn orthotropic part.Finally, initial blank is designed by considering external forces between... 

    Stress Analysis of in Cross-ply Laminates in Bending

    , M.Sc. Thesis Sharif University of Technology Yazdani Sarvestani, Hamid Reza (Author) ; Nosier, Asghar (Supervisor)
    Abstract
    In the present study, an analytical solution is developed to calculate the interlaminar stresses in long generally cross-ply laminated composite plates subjected to bending. At first, upon the integration of the strain-displacement relations and using the existing patterns in deformation of the long laminate, the general displacement field is extracted and simplified to the final form. Presented solution is based on a combined method containing the equivalent single-layer (ESL) theories beside the Reddy’s layerwise theory. In this method, the equivalent single-layer theories are utilized because of their simplicity and low computational efforts rather than the layerwise theory in evaluation... 

    Synthesis, Characterization and Photoelectrochemical Application of two Dimensional MoS2 and WS2 Nanosheets

    , Ph.D. Dissertation Sharif University of Technology Zirak, Mohammad (Author) ; Zaker Moshfegh, AliReza (Supervisor) ; Moradlou, Omran (Co-Advisor)
    Abstract
    In this research, Synthesis, characterization and photoelectrochemical application of two dimensional MoS2 and WS2 nanosheets have been carefully investigated. And finally, based on theoritical and experimental analysis results, the mechanisms of the observed photoelectrochemical (PEC) activities were suggested.The ab initio density functional calculations about Mo1-xWxS2 monolayer deposited over a TiO2 (110) substrate revealed a shift in band position of the Mo1-xWxS2 in favor of photoelectrochemical water splitting. Moreover, increase of W concentration in Mo1-xWxS2 could improve the charge separation and increase the effective mass ratio leading to an extension of the electron–hole... 

    Improved efficiency of dye-sensitized solar cells based on a single layer deposition of skein-like TiO 2 nanotubes

    , Article Journal of the American Ceramic Society ; Vol. 97, issue. 9 , 2014 , pp. 2873-2879 ; ISSN: 00027820 Mojaddami, M ; Mohammadi, M. R ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    We present a new TiO2 morphology, featuring high surface area and open structure, synthesized by a two-step chemical route for the manufacture of dye-sensitized solar cells (DSSCs). This construct is sets of intertwined one-dimensional (1D) nanostructures (i.e., nanotubes), so-called skein-like nanotubes (NTs). Such morphology is produced by a combination of TiC oxidation and hydrothermal processes. The mesoporous TiO2 nanoparticles, as the product of TiC oxidation operation, is used as the precursor of hydrothermal process to grow the skein-like NTs. The effect of processing parameters of TiC oxidation and hydrothermal processes is studied. The skein-like morphology enables to eliminate the... 

    Peculiar transport properties in Z-shaped graphene nanoribbons: A nanoscale NOR gate

    , Article Thin Solid Films ; Volume 548 , 2013 , Pages 443-448 ; 00406090 (ISSN) Khoeini, F ; Khoeini, F ; Shokri, A ; Sharif University of Technology
    2013
    Abstract
    A nanoscale logic NOR gate has been theoretically designed by magnetic flux inputs in a Z-shaped graphene nanoribbon composed of an armchair ribbon device sandwiched between two semi-infinite metallic zigzag ribbon leads. The calculations are based on the tight-binding model and iterative Green's function method, in which the conductance as well as current-voltage characteristics of the nanosystem are calculated, numerically. We show that the current and conductance are highly sensitive to both the magnetic fluxes subject to the device and the size of the system. Our results may have important applications for building blocks in the nanoelectronic devices based on graphene nanoribbons  

    Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

    , Article Carbon ; Volume 54 , 2013 , Pages 419-431 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Emamy, H ; Akhavan, F ; Sharif University of Technology
    2013
    Abstract
    Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 μg/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 μg/mL after 96 h. The oxidative stress was found as the main mechanism involved in the... 

    Effects of temperature on wear behavior of a plasma sprayed diesel engine cylinder

    , Article SAE Technical Papers ; 2012 Ghorashi, M. S ; Farrahi, G. H ; Eftekhari, M. R ; Sharif University of Technology
    SAE  2012
    Abstract
    One of the main subjects in automotive industries is to enhance the efficiency of internal combustion engines. Wear between cylinder and ring is one of the major parameters reducing the engine performance. So many parameters are affecting the wear losses. Temperature plays a key role on the severity of wear condition in internal combustion engines. In conventional cast iron cylinders, it is not possible to increase the temperature from a defined level, as it causes excessive wear in contact area between cylinder liner and piston ring. One of the major benefits of using ceramic coating is their ability to withstand in higher temperatures, while having adequate hardness to improve wear rate... 

    Surface modification for titanium implants by hydroxyapatite nanocomposite

    , Article Caspian Journal of Internal Medicine ; Volume 3, Issue 3 , 2012 , Pages 460-465 ; 20086164 (ISSN) Family, R ; Solati Hashjin, M ; Nik, S. N ; Nemati, A ; Sharif University of Technology
    2012
    Abstract
    Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO 2 and the chemical inertness of Al 2O 3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO 2-Al 2O 3 to modify the surface of these implants by adding ZrO 2 and Al 2O 3 to HA. The purpose of this study was to evaluate the efficacy of hydroxyapatite coating nonocomposite. Methods: From September 2009 to January2011, functionally graded HA-Al 2O 3-ZrO 2 and HA coatings were applied on Ti samples. HA-Al 2O 3-ZrO... 

    Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation

    , Article Solid State Communications ; Volume 151, Issue 17 , 2011 , Pages 1141-1146 ; 00381098 (ISSN) Ansari, R ; Motevalli, B ; Montazeri, A ; Ajori, S ; Sharif University of Technology
    Abstract
    Carbon nanostructures such as carbon nanotubes (CNTs) and graphene sheets have attracted great attention due to their exceptionally high strength and elastic strain. These extraordinary mechanical properties, however, can be affected by the presence of defects in their structures. When a material contains multiple defects, it is expected that the stress concentration of them superposes if the separation distances of the defects are low, which causes a more reduction of the strength. On the other hand, it is believed that if the defects are far enough such that their affected areas are distinct, their behavior is similar to a material with single defect. In this article, molecular dynamics... 

    Out-of-plane stresses in composite shell panels: Layerwise and elasticity solutions

    , Article Acta Mechanica ; Volume 220, Issue 1-4 , 2011 , Pages 15-32 ; 00015970 (ISSN) Miri, A. K ; Nosier, A ; Sharif University of Technology
    Abstract
    Boundary-layer effects in lengthy cross-ply laminated circular cylindrical shell panels under uniform axial extension are investigated by two analytical solutions. First, Reddy's layerwise theory with state-space approach is utilized to determine the local interlaminar stresses. In this method, the general displacement field is discretized through the shell thickness by a linear shape function. When the shell panel is subjected to an axial force, the axial strain is estimated by an equivalent single-layer theory. Second, the stress-function approach along with Fourier series expansion is applied to develop a novel elasticity solution. The elasticity solution, which is based on simply-support... 

    Nonlinear membrane model for large amplitude vibration of single layer graphene sheets

    , Article Nanotechnology ; Volume 22, Issue 30 , June , 2011 ; 09574484 (ISSN) Mianroodi, J. R ; Niaki, S. A ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    2011
    Abstract
    The nonlinear vibrational properties of single layer graphene sheets (SLGSs) are investigated using a membrane model. The nonlinear equation of motion is considered for the SLGSs by including the effects of stretching due to large amplitudes. The equation of motion is numerically solved utilizing the finite difference method for SLGSs with different initial and boundary conditions, sizes and pretensions. It is concluded that the nonlinear fundamental frequency of SLGSs increases by increasing the pretension and initial velocity. In addition, it is observed that an increase in the pretension weakens the effects of the initial velocity on the fundamental frequency, such that the fundamental... 

    Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation

    , Article Journal of Physical Chemistry B ; Volume 115, Issue 19 , 2011 , Pages 6279-6288 ; 15206106 (ISSN) Akhavan, O ; Ghaderi, E ; Esfandiar, A ; Sharif University of Technology
    American Chemical Society  2011
    Abstract
    Bioactivity of Escherichia coli bacteria (as a simple model for microorganisms) and interaction of them with the environment were controlled by their capturing within aggregated graphene nanosheets. The oxygen-containing functional groups of chemically exfoliated single-layer graphene oxide nanosheets were reduced by melatonin as a biocompatible antioxidant. While each one of the graphene (oxide) suspension and melatonin solution did not separately show any considerable inactivation effects on the bacteria, aggregation of the sheets in the melatonin-bacterial suspension resulted in trapping the bacteria within the aggregated sheets, i.e., a kind of inactivation. The bacteria trapped within... 

    Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol

    , Article Carbon ; Volume 49, Issue 1 , January , 2011 , Pages 11-18 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2011
    Abstract
    Graphene oxide platelets synthesized by using a chemical exfoliation method were dispersed in a suspension of ZnO nanoparticles to fabricate ZnO/graphene oxide composite. Formation of graphene oxide platelets (with average thickness of ∼0.8 nm) hybridized by ZnO nanoparticles (with average diameter of ∼20 nm) was investigated. The 2D band in Raman spectrum confirmed formation of single-layer graphene oxides. The gradual photocatalytic reduction of the graphene oxide sheets in the ZnO/graphene oxide suspension of ethanol was studied by using X-ray photoelectron spectroscopy for different ultra violet (UV)-visible irradiation times. After 2 h irradiation, the relative concentration of the... 

    Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 30 , July , 2010 , Pages 12955-12959 ; 19327447 (ISSN) Akhavan, O ; Abdolahad, M ; Esfandiar, A ; Mohatashamifar, M ; Sharif University of Technology
    2010
    Abstract
    TiO2 nanoparticles were physically attached to chemically synthesized single-layer graphene oxide nanosheets deposited between Au electrodes in order to investigate the electrical, chemical, and structural properties of the TiO2/graphene oxide composition exposed to UV irradiation. X-ray photoelectron spectroscopy showed that after effective photocatalytic reduction of the graphene oxide sheets by the TiO2 nanoparticles in ethanol, the carbon content of the reduced graphene oxides gradually decreased by increasing the irradiation time, while no considerable variation was detected in the reduction level of the reduced sheets. Raman spectroscopy indicated that, at first, the photocatalytic... 

    Rate-distortion optimization of scalable video codecs

    , Article Signal Processing: Image Communication ; Volume 25, Issue 4 , 2010 , Pages 276-286 ; 09235965 (ISSN) Roodaki, H ; Rabiee, H. R ; Ghanbari, M ; Sharif University of Technology
    Abstract
    In this paper joint optimization of layers in the layered video coding is investigated. Through theoretical analysis and simulations, it is shown that, due to higher interactions between the layers in a SNR scalable codec, this type of layering technique benefits most from joint optimization of the layers. A method for joint optimization is then proposed, and its compression efficiency is contrasted against the separate optimization and an optimized single layer coder. It is shown that, in joint optimization of SNR scalable coders when the quantization step size of the enhancement layer is larger than half the step size of the base layer, an additional improvement is gained by not sending...