Loading...
Search for: single-walled-carbon
0.007 seconds
Total 48 records

    Simulation of Fluid Flow in Nonstraight Nanochannels

    , M.Sc. Thesis Sharif University of Technology Kargar, Sajad (Author) ; Mousavi, Ali (Supervisor)
    Abstract
    Understanding the flow of liquids and particularly water in nanochannels is important for scientific and technological applications, such as for filtration and drug delivery. In this study, we perform molecular dynamics simulations to investigate the transfer of single-file water molecules across straight or nonstraight single-walled carbon nanotubes (SWCNTs). In contrast with the macroscopic scenario, the nonstraight nanostructure can increase the water permeation. Remarkably, compared with the straight SWCNT, the nonstraight SWCNT with the minimal bending angle of 30° in the simulations can enhance the water transport up to 3.9 times. Also increasing length and diameter of carbon nanotubes... 

    Chemical Modification of Glassy Carbon Electrode by Carbon Nanostructures/Conductive Polymers Composites and Its Application in The Study of Electrochemical Behaviour and Determination of Salbutamol and Isoprenaline

    , M.Sc. Thesis Sharif University of Technology Panahi, Saba (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part of thesis, the electropolymerization of pyrrole was performed in the presence of new coccine (NC) as a dopant anion on the surface of the electrode precoated with SWCNT. The modified electrode was used to study the voltammetric response of salbutamol (SAL). The results showed a remarkable increase in the anodic peak current of SAL in comparison to the bare GCE. The surface morphology PPY/CNT/GCE was thoroughly characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. Under the optimized analysis conditions, the modified electrode showed two linear dynamic ranges of 0.02 – 0.1 μM and 0.1-10 μM with a detection limit of 6 nM for the... 

    Vibrational behavior of defective and repaired carbon nanotubes under thermal loading: A stochastic molecular mechanics study

    , Article Mechanics of Materials ; Volume 163 , 2021 ; 01676636 (ISSN) Payandehpeyman, J ; Moradi, K ; Zeraati, A. S ; Hosseinabadi, H. G ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbon nanotubes (CNTs) are promising candidates for high-resolution mass nanosensors owing to their unique vibrational behavior. The structural characteristic (e.g. defect type and density) and working temperature have a significant effect on the natural frequency of CNT-based sensors. Herein, a stochastic approach based on novel finite element and molecular mechanics simulations is implemented to model the effect of temperature and structural characteristics of single-wall CNTs including defects (vacancy defect with different densities) and chirality (zigzag and armchair) on their vibrational behavior. The results show that the vacancy defects exert a significant deterioration of the... 

    Vibrational analysis of single-walled carbon nanotubes using beam element

    , Article Thin-Walled Structures ; Volume 47, Issue 6-7 , 2009 , Pages 646-652 ; 02638231 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Vafai, A ; Sharif University of Technology
    2009
    Abstract
    Vibrational analysis of single-walled carbon nanotubes (SWCNTs) is performed using a finite element method (FEM). To this end, the vibrational behavior of bridge and cantilever SWCNTs with different side lengths and diameters is modeled by three-dimensional elastic beams and point masses. The beam element elastic properties are calculated by considering mechanical characteristics of the covalent bonds between the carbon atoms in the hexagonal lattice. The mass of each beam element is assumed as point masses at nodes coinciding with the carbon atoms. Implementing the atomistic simulation approach, the natural frequencies of zigzag and armchair SWCNTs are computed. It is observed that the... 

    Transversal thermal transport in single-walled carbon nanotube bundles: Influence of axial stretching and intertube bonding

    , Article Journal of Chemical Physics ; Volume 139, Issue 18 , 2013 ; 00219606 (ISSN) Gharib Zahedi, M. R ; Tafazzoli, M ; Böhm, M. C ; Alaghemandi, M ; Sharif University of Technology
    2013
    Abstract
    Using reverse nonequilibrium molecular dynamics simulations the influence of intermolecular bridges on the thermal conductivity (λ) in carbon nanotube (CNT) bundles has been investigated. The chosen cross linkers (CH 2, O, CO) strengthen the transversal energy transport relative to the one in CNT bundles without bridges. The results showed that λ does not increase linearly with the linker density. The efficiency of the heat transport is determined by the number of linkers in the direction of the heat flux, the type of the linker, and their spatial ordering. The influence of a forced axial stress on the transversal λ has been also studied. The observed λ reduction with increasing axial... 

    Thermal buckling analysis of bridged single walled carbon nanotubes using molecular structural mechanics

    , Article Journal of Applied Physics ; Volume 117, Issue 11 , 2015 ; 00218979 (ISSN) Firouz Abadi, R. D ; Badri Kouhi, E ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    This paper is concerned with the stability analysis of bridged single walled carbon nanotubes (SWCNT) under temperature changes. A molecular structural mechanics model is utilized to investigate the free vibration frequencies and thermal buckling of SWCNT. In comparison with most of the previous studies, a temperature-variable thermal-expansion-coefficient is used that is negative under a certain temperature. Also thermal variation of Young's modulus of the CNTs is considered. Several studies are performed to investigate the critical temperature change due to heating and cooling of SWCNTs with different chiralities and slenderness ratios and the stability boundaries are determined  

    The effects of geometrical parameters on force distributions and mechanics of carbon nanotubes: A critical study

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 14, Issue 12 , 2009 , Pages 4246-4263 ; 10075704 (ISSN) Ansari, R ; Motevalli, B ; Sharif University of Technology
    Abstract
    In this paper, using the continuum approximation together with Lennard-Jones potential, a new semi-analytical expression is given to evaluate the van der Waals interaction between two single-walled carbon nanotubes. Based on this expression, two new formulations are also proposed to model multi-walled carbon nanotubes. In the first one, the interactions between each pair of shells from the inner and outer tubes are summed up over all of the pairs, whereas in the second formulation, a set of correction factors are applied to convert the results of double-walled carbon nanotubes to the correlated multi-walled ones. With respect to the present formulations, extensive studies on the variations... 

    The effect of Pd addition to Fe as catalysts on growth of carbon nanotubes by TCVD method

    , Article Applied Surface Science ; Volume 254, Issue 20 , 15 August , 2008 , Pages 6416-6421 ; 01694332 (ISSN) Mortazavi, S. Z ; Reyhani, A ; Iraji zad, A ; Sharif University of Technology
    Elsevier  2008
    Abstract
    The effects of Pd addition to Fe (Pd/Fe = 0, 2.5/7.5, 5/5, 7.5/2.5 and 1) and growth temperatures (920 and 970 °C) on density, diameter and growth mode of carbon nanotubes (CNTs) have been studied. SEM observations and TG analyses confirmed that the CNT yields depend on Pd/Fe ratios as (7.5/2.5) > (5/5) > Pd > (2.5/7.5) > Fe at both growth temperatures. TEM data showed that addition of Pd results in tip growth mode. From Raman spectroscopy data, the order of samples' structural quality (I G /I D ratio) are Fe > Pd/Fe (2.5/7.5) > (5/5) > (7.5/2.5) > Pd and the I G /I D ratios increase by decreasing the growth temperature. Films with higher concentration of Fe (Pd/Fe = 0, 2.5/7.5) contain some... 

    The effective mechanical properties and the interfacial characterization of CNT reinforced nanocomposites

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 9 March 2009 through 11 March 2009, San Diego, CA ; Volume 7294 , 2009 ; 0277786X (ISSN); 9780819475541 (ISBN) Sadeghia, H ; Naghdabadi, R ; The International Society for Optical Engineering (SPIE) ; Sharif University of Technology
    2009
    Abstract
    A small volume fraction of Carbon Nanotubes (CNTs) added in a polymeric matrix increases significantly the mechanical properties of the polymers. It is experimentally determined from the TEM images of CNT-based nanocomposites that nanotubes don't stand straight in their embedded matrix and they have some curvature in their shape. The load transfer mechanism between CNT and polymer matrix is also one of the most important issues which is not understood explicitly, yet. In this paper a wavy Single Walled Carbon Nanotube (SWCNT) is modeled as inclusion in a polymer matrix and its effective mechanical properties is studied. This model is based on using 3-D Representive Volume Element (RVE) with... 

    Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 41, Issue 3 , 2009 , Pages 513-517 ; 13869477 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    Elsevier  2009
    Abstract
    In this paper, the axial stability of single-walled carbon nanopeapods is studied based on an elastic continuum shell model. In order to model the non-bonded van der Waals interactions between host carbon nanotube and guest fullerenes, an equivalent pressure distribution is proposed and incorporated in the model. Deriving an explicit equation for the determination of critical axial load, it is concluded that the axial stability of a single-walled carbon nanopeapod is less than that of a carbon nanotube under otherwise identical conditions. In addition, it is shown that applying external pressure to the carbon nanopeapod decreases the axial compressive stability through reducing the critical... 

    Stability of C60-peapods under hydrostatic pressure

    , Article Acta Materialia ; Volume 55, Issue 16 , 2007 , Pages 5483-5488 ; 13596454 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    The stability of single-walled carbon nanopeapods under hydrostatic pressure is investigated using a continuum-based elastic shell model. The model incorporates nonbonded van der Waals interactions between the nested fullerenes and the host carbon nanotube. By deriving an explicit equation, it is shown that the critical hydrostatic pressure for the onset of structural instability of a completely packed C60@(10,10) nanopeapod is ∼1.11 GPa, while for the case of the pristine host (10,10) nanotube it is ∼1.84 GPa. Thus, it is concluded that the fullerene encapsulation weakens the host nanotube under hydrostatic pressure. In addition, it is quantitatively shown that any decrease in packing... 

    Stability analysis of carbon nanotubes under electric fields and compressive loading

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 20 , 2008 ; 00223727 (ISSN) Sadeghi, M ; Ozmaian, M ; Naghdabadi, R ; Sharif University of Technology
    2008
    Abstract
    The mechanical stability of conductive, single-walled carbon nanotubes (SWCNTs) under applied electric field and compressive loading is investigated. The distribution of electric charges on the nanotube surface is determined by employing a method based on the classical electrostatic theory. For mechanical stability analysis, a hybrid atomistic-structural element is proposed, which takes into account the nonlinear features of the stability. Nonlinear stability analysis based on an iterative solution procedure is used to determine the buckling force. The coupling between electrical and mechanical models is accomplished by adding Coulomb interactions to the mechanical model. The results show... 

    Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 9, Issue 6 , 2017 ; 17588251 (ISSN) Hosseini, M ; Haghshenas Gorgani, H ; Shishesaz, M ; Hadi, A ; Sharif University of Technology
    Abstract
    This paper studies stress distribution in a single-walled carbon nanotube (SWCNT) under internal pressure with various chirality. Strain gradient theory is used to capture the size-dependent behavior of the SWCNT. Minimum total potential energy principle is successfully applied to derive the governing differential equation and its associated boundary conditions. Due to complexity of the governing differential equation and boundary conditions, numerical scheme is used to solve the problem. Comparing the results based on strain gradient theory and that of classical elasticity shows a major difference between these two methods. However, a close examination of the results indicates that both... 

    Site-specific protein conjugation onto fluorescent single-walled carbon nanotubes

    , Article Chemistry of Materials ; Volume 32, Issue 20 , 2020 , Pages 8798-8807 Zubkovs, V ; Wu, S. J ; Rahnamaee, S. Y ; Schuergers, N ; Boghossian, A. A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Semiconducting single-walled carbon nanotubes (SWCNTs) are among the few photostable optical emitters that are ideal for sensing, imaging, drug delivery, and monitoring of protein activity. These applications often require strategies for immobilizing proteins onto the nanotube while preserving the optical properties of the SWCNTs. Site-specific and oriented immobilization strategies, in particular, offer advantages for improving sensor and optical signaling responses. In this study, we demonstrate site-specific protein immobilization of a model of enhanced yellow fluorescent protein with a single engineered cysteine residue, using either single-stranded DNA or a pyrene-containing linker to... 

    Simulation of biomanipulation using molecular dynamics

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 9, Issue PARTS A AND B , 2012 , Pages 137-143 ; 9780791845257 (ISBN) Pishkenari, H. N ; Mahboobi, S. H ; Mahjour, M. A ; Meghdari, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the simulation of biomolecules manipulation using molecular dynamics (MD) is studied. In order to investigate the manipulation behavior, we have used the ubiquitin as biomolecule, a single-walled carbon nanotube (SWCNT) as manipulation probe, a two-layer graphene sheet as substrate. Along this line, a series of simulations are conducted to study the effects of different conditions on the success of manipulation process. These conditions include tip diameter, vertical gap between the tip and substrate, initial orientation of protein, and the tip position with respect to the biomolecule  

    Shell-like instability of large diameter single-walled carbon nanotubes conveying fluid

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 11 , 2012 , Pages 3389-3397 ; 1738494X (ISSN) Ali-Akbari, H. R ; Firouz Abadi, R. D ; Haddadpour, H ; Noorian, M. A ; Sharif University of Technology
    2012
    Abstract
    The instability of large diameter single-walled carbon nanotubes (SWCNTs) conveying fluid is investigated based on the molecular mechanics. Using the modal expansion for structural displacements, the governing equations of coupled fluid-structural dynamics of SWCNTs are derived. The natural frequencies and mode shape of the SWCNTs are obtained based on the molecular structural mechanics to account for the effect of chirality and discrete nature of SWCNTs. The results show that the vibrational behavior of large diameter SWCNTs conveying fluid is size dependent, but the effect of chirality is negligible. The obtained results are compared with the equivalent continuum-based model in the... 

    Scalable, microwave-assisted decoration of commercial cotton fabrics with binary nickel cobalt sulfides towards textile-based energy storage

    , Article Electrochimica Acta ; Volume 404 , 2022 ; 00134686 (ISSN) Hekmat, F ; Balim, U ; Unalan, H. E ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    High-performance textile-based energy storage systems with high energy and power densities alongside remarkable cyclic life are always at the leading edge of wearable electronics. Herein, commercial cotton fabrics (CCFs) are used as the substrates for the fabrication of ultra-light, high-performance wearable supercapacitors. Hierarchical microstructures of nickel-cobalt sulfide (Ni-Co-S) decorated single-walled carbon nanotubes (SWCNTs) are used as the positive supercapacitor electrodes. Enhanced electrochemical performance with a specific gravimetric capacity of 331 Cg−1 (at a current density of 0.3 Ag−1) is obtained from these Ni-Co-S@SWCNT@CCF electrodes. Besides, composites of graphene... 

    Plasmon-induced near-infrared fluorescence enhancement of single-walled carbon nanotubes

    , Article Carbon ; Volume 194 , 2022 , Pages 162-175 ; 00086223 (ISSN) Amirjani, A ; Tsoulos, T. V ; Sajjadi, S. H ; Antonucci, A ; Wu, S. J ; Tagliabue, G ; Fatmehsari Haghshenas, D ; Boghossian, A. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Single-walled carbon nanotubes (SWCNTs) emit near-infrared (NIR) fluorescence that is ideal for optical sensing. However, the low quantum yields diminish the sensor's signal-to-noise ratio and limits the penetration depths for in vivo measurements. In this study, we perform a systematic investigation of the plasmonic effects of Ag and Au nanoparticles of various geometries to tune and even enhance the fluorescence intensity of single-stranded DNA-wrapped SWCNTs (ssDNA-SWCNTs). We observe a chirality-dependent NIR fluorescence enhancement that varies with both nanoparticle shape and material, with Au nanorods increasing (7, 5) and (7, 6) chirality emissions by 80% and 60% and Ag nanotriangles... 

    On the formation of SWCNTs and MWCNTs by arc-discharge in aqueous solutions: The role of iron charge and counter ions

    , Article Fullerenes Nanotubes and Carbon Nanostructures ; Volume 19, Issue 4 , 2011 , Pages 317-328 ; 1536383X (ISSN) Gheytani, S ; Shervin, S. H ; Simchi, A ; Sharif University of Technology
    Abstract
    Single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were synthesized in aqueous solutions containing FeCl2, FeCl3, FeSO4 and Fe2(SO4) 3. The effects of iron charge and the counter ions on the formation of carbon nanotubes (CNTs) were investigated. Thermogravimetric (TG) analysis indicated that carbon multilayer structures including CNTs and multishell graphite particles were formed in deionized (DI) water without the iron precursor. SWCNTs were also synthesized in the presence of the iron ions. It was also found that the mole ratio of [Fe2+]/[Fe3+] in the solution has a significant influence on the purity of CNTs and the process yield. The highest yield was... 

    Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

    , Article Structural Engineering and Mechanics ; Volume 66, Issue 5 , 10 June , 2018 , Pages 621-629 ; 12254568 (ISSN) Hosseini Kordkheili, S. A ; Mousavi, T ; Bahai, H ; Sharif University of Technology
    Techno Press  2018
    Abstract
    By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos. Copyright © 2018 Techno-Press,...