Loading...
Search for: sintering
0.008 seconds
Total 248 records

    Phase formation during sintering of nanocrystalline zirconia/stainless steel functionally graded composite layers [electronic resource]

    , Article Journal of Materials Letters ; 15 February 2011, Volume 65, Issue 3, Pages 523–526 Dourandish, M ; Simchi, A. (Abdolreza) ; Hokamoto, K ; Tanaka, S ; Sharif University of Technology
    Abstract
    Microstructural development and phase formation at the interface of yttria stabilized zirconia (3Y-TZP)/430L stainless steel composite layers produced by co-sintering method were studied by SEM, HRTEM, micro-focus XRD, and EPMA. Formation of a rich chromium boundary layer at the interface was noticed, which revealed Cr aggregation at the interface at the elevated temperatures. Misfit dislocations were also observed at the joint interface to tackle the mismatch crystallographic orientations between the ceramic and metal layer. The results of the micro-focus XRD showed formation of no new phases at the boundary zone. Microstructural studies also revealed a retarded grain growth in the... 

    Sintering viscosity and sintering stress of nanostructured WC–Co parts prepared by powder injection moulding [electronic resource]

    , Article Journal of Powder Metallurgy ; Februrary 2011, Volume 54, Issue 1, P. 84-88 Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    The uniaxial viscosity and sintering stress of WC-10Co-0⊙ 9VC (wt-%) were obtained by a loading dilatometer as functions of fractional density (0⊙ 64< ρ< 0⊙ 93) and temperature (1084< T< 1297° C) according to a Newtonian constitutive law commonly used to simulate sintering. The viscosity is suggested to follow In η= a+ Q/RT+ bρ with the values of a= 52⊙ 3±4⊙ 5 and b= 16⊙ 8±0⊙ 2. Q reflects the temperature dependence of η and estimated to be 502±52 kJ mol-1. The sintering stress exhibited almost a constant value in the range of 0·05–0·4 MPa. It is shown that Rahaman's model best fits the experimental results. This paper describes experiments performed on nanostructured WC–Co feedstock to... 

    Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 41, Issue 1, January 2010, Pages 233-241 Simchi, A. (Abdolreza) ; Petzoldt, F ; Sharif University of Technology
    Abstract
    Abstract Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (> 4 pct) is developed in the temperature range of 1080° C to 1350° C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the  

    Interface formation and bond strength in 3Y-TZP/Cr composite bilayers produced by sinter–joining [electronic resource]

    , Article Materials Science and Engineering: A ; Volume 527, Issue 3, 15 January 2010, Pages 449–453 Dourandish, M ; Simchi, A. (Abdolreza) ; Hokamoto, K ; Tanaka, S ; Sharif University of Technology
    Abstract
    The mechanism of interface formation during sinter–joining of nanostructured yttria stabilized zirconia (27 nm) compacts with chromium powder was investigated. The effect of sintering atmosphere, i.e. argon or vacuum, was studied. Microstructural evaluation and phase formation was examined by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and micro-focused X-ray diffraction (MFXRD) methods. It is shown that spreading and evaporation–condensation mechanisms are responsible for the interface formation. An improved joint shear-strength was obtained after sintering in vacuum (74 MPa) compared with argon (41 MPa). The result of MFXRD indicated formation of Cr-island at... 

    The modeling of kinetics and catalyst deactivation in propane dehydrogenation over Pt-Sn/γ-Al2O3 in presence of water as an oxygenated additive

    , Article Petroleum Science and Technology ; Vol. 32, issue. 10 , Mar , 2014 , pp. 1139-1149 ; ISSN: 10916466 Barghi, B ; Fattahi, M ; Khorasheh, F ; Sharif University of Technology
    Abstract
    A reduction in catalyst's activity with time-on-stream and the formation of side products are two of the problems associated with catalytic propane dehydrogenation (PDH). Previous studies have indicated that the presence of small amounts of oxygenated additives such as water can reduce coke formation and enhance catalyst activity. The aim of the present work was to develop an appropriate kinetic model for PDH over a commercial Pt-Sn/γ-Al 2O3 catalyst in the presence of small amounts of water. Experimental data were obtained from a previous study where catalytic PDH was carried out in a bench scale reactor system at atmospheric pressure in the temperature range of 575-620°C in the presence of... 

    Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: Corrosion and sintering temperature

    , Article Applied Surface Science ; Vol. 301 , May , 2014 , pp. 250-257 ; ISSN: 01694332 Goudarzi, M ; Batmanghelich, F ; Afshar, A ; Dolati, A ; Mortazavi, G ; Sharif University of Technology
    Abstract
    Hydroxyapatite (HA) coatings in and onto anodized TiO2 nanotube arrays were presented and prepared by electrophoretic deposition technique (EPD). Coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). EPD proved to be an innovative and versatile technique to coat HA on and into nanotubular structures of TiO2 with enhanced adhesion between nanotubes and HA particles provided by mechanical interlocking. After EPD of HA on TiO2 layer, samples were sintered at 400 °C, 600 °C and 800 °C for 2 h in an Ar atmosphere. Effect of EPD processing parameters on thickness of the deposits and rate of deposition was elucidated for HA coatings on the nanotubular TiO2... 

    Production of Cu-TiC nanocomposite using mechanical alloying route

    , Article Advanced Materials Research ; Vol. 829, issue , 2014 , pp. 572-576 ; ISSN: 10226680 Bagheri, G. A ; Abachi, P ; Purazrang, K ; Rostami, A ; Sharif University of Technology
    Abstract
    In this study, Cu-TiC nanocomposites were produced by high energy ball milling of elemental powders and in-situ formation of TiC in the copper matrix. Cu-40wt% Ti powder mixture were milled for 60 h, then graphite powder was added, subsequently milling was continued for further 10 h. Based on theoretical calculations, at this composite, the amount of TiC as reinforcement should be 60.25vol% (45.47wt%). The effect of milling time on solution progress of titanium in the copper lattice was studied by X-Ray diffraction analysis (XRD) with CuKα radiation. Considering XRD of Cu-40wt%TiC after 60 h milling data and Williamson-Hall relation, crystallite size and lattice strain of copper were... 

    Production of nanostructured Ni-Ti-Ag alloy by mechanical alloying

    , Article Advanced Materials Research ; Vol. 829 , 2014 , pp. 67-72 ; ISSN: 10226680 Rostami, A ; Sadrnezhaad, S. K ; Bagheri, G. A ; Sharif University of Technology
    Abstract
    Because of corrosion resistance and antibacterial effects, shape memory Ni-Ti-Ag alloy can be considered for different biomedical applications. Mechanical alloying is used to produce nanostructured Ni-Ti-Ag alloy from elemental powders. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) are used to characterize the product. Results show that after 1h milling, homogenous distribution of the elements occurs; while no intermetallic compounds is observed. After 3h milling, titanium dissolves in nickel to form amorphous and nanostructured solid phases. Peaks of B2 phase appear in the XRD pattern after the 3h milling of the powder mixture. Sintering of the 3h-milled... 

    Sintering characterizations of Ag-nano film on silicon substrate

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 342-346 ; ISSN: 10226680 ; ISBN: 9783037859070 Keikhaie, M ; Akbari, J ; Movahhedi, M. R ; Alemohammad, H ; Sharif University of Technology
    Abstract
    Nowadays, thin films have many applications in every field. So, in order to improve the performance of thin film devices, it is necessary to characterize their mechanical as well as electrical properties. In this research work we focus on the development of a model for the analysis of the mechanical and electrical properties of silver nanoparticles deposited on silicon substrates. The model consists of inter-particle diffusion modeling and finite element analysis. In this study, through the simulation of the sintering process, it is shown that how the geometry, density, and electrical resistance of the thin film layer are changed with sintering conditions. The model is also used to... 

    Electrophoretic deposition of Ni/SiO2 nanocomposite coating: Fabrication process and tribological and corrosion properties

    , Article Journal of Nano Research ; Volume 26 , 6 January , 2014 , Pages 45-51 ; ISSN: 16625250 Isfahani, A. G ; Ghorbani, M ; Sharif University of Technology
    Abstract
    To the best of our knowledge, this work presents the first successful effort to fabricate and study nanostructured Ni-based composite coatings using the electrophoretic deposition method with nanostructured SiO2 particles. In this work, Ni/SiO2 nanoparticle composite coatings were prepared by electrophoretic deposition (EPD) [1] and their hardness, wear and corrosion resistances [2] were examined. After studying the morphology of the coatings and finding the optimum conditions for uniform coating, in order to improve the mechanical properties as well as resistance to corrosion, sintering was performed. The Ni/SiO2 nanocomposite coatings show excellent hardness (∼376 HV), reduced Young's... 

    Study plasma electrolytic oxidation process and characterization of coatings formed in an alumina nanoparticle suspension

    , Article Vacuum ; Vol. 108, issue , 2014 , p. 12-19 Sarbishei, S ; Faghihi Sani, M. A ; Mohammadi, M. R ; Sharif University of Technology
    Abstract
    Alumina-silicate composite coatings were formed on titanium substrate by plasma electrolytic oxidation (PEO) process using a silicate-based electrolyte containing alumina nanoparticles. Microstructure, chemical and phase compositions, and thickness of the coatings were investigated to determine, coating mechanism and probable reactions during the process. The effect of processing time on corrosion resistance of the coatings was investigated using the potentiodynamic polarization test. Barrier layer (TiO2) formation, micro arcs occurrence, and electrolyte ionization were the main stages of PEO coating growth process. Alumina nanoparticles were incorporated into the coating by cataphoretic and... 

    Effect of zircon content on chemical and mechanical behavior of silica-based ceramic cores

    , Article Ceramics International ; Vol. 40, issue. 1 PART A , January , 2014 , p. 1093-1098 Kazemi, A ; Faghihi-Sani, M. A ; Nayyeri, M. J ; Mohammadi, M ; Hajfathalian, M ; Sharif University of Technology
    Abstract
    In this work, the effect of zircon content on the mechanical and chemical behaviors of injection molded silica-based ceramic cores has been investigated. In order to simulate a casting process condition, the sintered samples at 1220 C were consequently heated up to 1430 C. Three point bending tests were carried out on all the prepared samples. The chemical resistance of the prepared cores was evaluated by leaching of samples in 43% KOH solution at its boiling point. Phase evolution and microstructure were investigated by XRD and SEM, respectively. Results showed that increasing zircon content led to an increase in MOR and decrease in leachability owing to the decrease in content of fused... 

    Two-dimensional axisymmetric modelingof combustion in an iron ore sintering bed

    , Article Special Topics and Reviews in Porous Media ; Volume 4, Issue 4 , 2013 , Pages 299-313 ; 21514798 (ISSN) Lafmejani, S. S ; Emami, M. D ; Panjehpour, M ; Sohrabi, S ; Sharif University of Technology
    2013
    Abstract
    A twodimensional model, based on conservation of mass, momentum and energy equations, is represented in this paper in which the coke combustion process, for iron ore sintering in a packed bed, is simulated numerically. The aforementioned packed bed consists of iron ore, coke, limestone and moisture. The main objective of iron ore sintering is producing resistant agglomerates which can be used in blast furnaces. For this purpose, the sinter mixture is partially melted in high temperature and finally molten is allowed to cool. The molten production and subsequently, the solidification process are totally dependent on composition and components of mixture. Changes in bed porosity, caused by... 

    An investigation on mechanical properties of Alumina-Zirconia-Magnesia spinel composite ceramics fabricated by gel-casting using solution combustion synthesized powder

    , Article Materials Science and Engineering A ; Volume 587 , 2013 , Pages 336-343 ; 09215093 (ISSN) Khoshkalam, M ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    Addition of spinel (MgAl2O4) to Al2O3-ZrO2 composite inhibits alumina grain growth and produces phase boundaries that leads to formation of a ceramic matrix composite with special mechanical properties such as high temperature superplastic deformation. However, the room temperature mechanical properties of Alumina-zirconia-magnesia spinel composite (AZM) such as fracture toughness were rarely investigated by researchers. In this research the AZM nanocomposite powders were synthesized via the solution combustion method. The dense AZM composite samples were fabricated through gelcasting process. Phase analysis studies were performed on both powder and sintered samples and the effects of spinel... 

    Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 15-16 , 2013 , Pages 3397-3402 ; 09552219 (ISSN) Kazemi, A ; Faghihi Sani, M. A ; Alizadeh, H. R ; Sharif University of Technology
    2013
    Abstract
    In this work, cristobalite crystallization and its effects on mechanical and chemical behaviour of injection moulded silica-based ceramic cores were investigated. In order to simulate casting process condition, the sintered samples at 1220 °C were also heated up to 1430 °C. Flexural strength test was carried out on both sintered and heat treated samples. Chemical resistance of the cores was evaluated by leaching the samples inside 43. wt% KOH solution at its boiling point. Phase evolution and microstructure were investigated by thermal analyses (DTA and DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM). Results showed that cristobalite was... 

    Spark plasma sintering of TaC-HfC UHTC via disilicides sintering aids

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 8 , 2013 , Pages 1479-1484 ; 09552219 (ISSN) Ghaffari, S. A ; Faghihi-Sani, M. A ; Golestani Fard, F ; Mandal, H ; Sharif University of Technology
    2013
    Abstract
    Ta0.8Hf0.2C ceramic has the highest melting point among the known materials (4000°C). Spark plasma sintering is a new route for consolidation of materials, specially ultra high temperature ceramics (UHTCs), which are difficult to be sintered at temperatures lower than 2000°C.The purpose of this study is to consolidate Ta0.8Hf0.2C by spark plasma sintering at low temperature using MoSi2 and TaSi2 as sintering aid. In this regard, effect of different amounts of sintering aids and carbides ratio on densification behavior and mechanical properties of Ta1-xHfxC were investigated.Fully consolidation of Ta0.8Hf0.2C was achieved in presence of 12vol.% sintering aid after sintering at 1650°C for 5min... 

    Wear characteristics of aluminum matrix nanocomposites with Ce-TZP/Al 2O3 nanocomposite produced by powder metallurgy at different sintering temperatures

    , Article TMS Annual Meeting, San Antonio, TX ; 2013 , Pages 1103-1110 ; 9781118605813 (ISBN) Soltani, N ; ABahrami ; Pech-Canul, M. I ; Sharif University of Technology
    2013
    Abstract
    In this work the effects of sintering temperature on the hardness, friction and wear characteristics of Al-10Ce-TZP/Al2O3 composites have been investigated. Aluminum and Ce-TZP/Al2O3 nanocomposite were selected as raw materials. Ce-TZP/Al2O3 nanocomposites were synthesized by the aqueous combustion method. 7 wt. % 10Ce-TZP/Al2O3 composites in the form of cylindrical samples were prepared at the sintering temperatures of 400, 450 and 500°C under an applied pressure of 600 MPa for 60 min. Wear tests were carried out using the pin-on-disk method under normal loads of 10 and 20 Kgf at constant sliding velocity of 0.25 m/s. The surfaces of the worn nanocomposite were examined by scanning electron... 

    Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties

    , Article Ceramics International ; Volume 39, Issue 3 , April , 2013 , Pages 2197-2206 ; 02728842 (ISSN) Aminzare, M ; Eskandari, A ; Baroonian, M. H ; Berenov, A ; Razavi Hesabi, Z ; Taheri, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    Two different hydroxyapatite based composites reinforced by oxide ceramic (20 wt%) nano crystals were synthesized by high-energy ball milling and sintered by pressure less technique. Alumina and titania nanoparticles as secondary phases improved densification and mechanical behavior of apatite and postponed its decomposition to the tricalcium phosphate (TCP) phases at elevated temperatures. Increasing the relative density of apatite using nano reinforcements leads to enhance the bending strength by more than 40% and 27% (as compared to the pure HA) and increase the hardness from 2.52 to 5.12 (Al2O3 composite) and 4.21 (TiO2 addition) GPa, respectively. Transmission electron microscopy (TEM),... 

    Synthesis and characterisation of β-tricalcium phosphate coating on zirconia toughened alumina by biomimetic method

    , Article Advances in Applied Ceramics ; Volume 112, Issue 3 , 2013 , Pages 140-145 ; 17436753 (ISSN) Esfahani, H ; Nemati, A ; Salahi, E ; Sharif University of Technology
    2013
    Abstract
    The present work studied bioactive coatings on the surface of ceramic biomaterials. Zirconia toughened alumina (ZTA) composites containing 15 mol.-%. Partially stabilised zirconia was prepared after 1 h sintering at 1550°C. Apatite layers were then coated onto the surfaces of composites by the biomimetic method using 1·5-2 multiply concentrations of simulated body fluid (SBF). Before treatment in SBFs, a sodium silicate layer was employed as nucleating agent to induce the formation of a calcium phosphate layer. The effect of immersion time on the morphology of the precipitate was monitored with a scanning electron microscope. X dot maps revealed that there is a relationship between... 

    Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2

    , Article Ceramics International ; Volume 39, Issue 2 , 2013 , Pages 1985-1989 ; 02728842 (ISSN) Ghaffari, S. A ; Faghihi Sani, M. A ; Golestani Fard, F ; Ebrahimi, S ; Sharif University of Technology
    2013
    Abstract
    Ta0.8Hf0.2C ceramic has the highest melting point among the known materials (4000 °C). However, this high melting point makes the ceramic difficult to be sintered at temperatures lower than 2300 °C, pressurelessly. The purpose of this study is to consolidate Ta 0.8Hf0.2C UHTC by pressureless sintering at 2000 °C using MoSi2 as sintering aid. In this regard, effect of different amounts of MoSi2 on sintering behavior of Ta0.8Hf 0.2 UHTC was investigated. It was observed that condensation of the UHTC after sintering at 2000 °C was enhanced by increasing MoSi2 content and the highest relative density of 95% was obtained in the presence of 24 vol.% MoSi2. XRD pattern of the sintered UHTC...