Loading...
Search for: sit-to-stand
0.01 seconds

    Design and Fabrication of Amotorized Walker with Sit-to-Stand Ability

    , M.Sc. Thesis Sharif University of Technology Kousha, Ebrahim (Author) ; Farahmand, Farzam (Supervisor) ; Durali, Mohammad (Supervisor) ; Ahmadi Bani, Monireh (Co-Supervisor)
    Abstract
    The purpose of this project is to design and build a motorized walker with sit to stand ability, by means of which the user can get up from a chair or the edge of the bed and stand with complete independence; Relying on it, the patient could walk easily and finally sit down on the chair, the edge of the bed, or the toilet seat. For this purpose, the conducted researches and previously built devices were studied and the strengths and weaknesses of each were examined. The stages of conceptual design including the design of the sit to stand mechanism, the design of the structure and finally the control algorithm were completed, then the detailed design of the mentioned topics was carried out.... 

    A bio-inspired modular hierarchical structure to plan the sit-to-stand transfer under varying environmental conditions

    , Article Neurocomputing ; Volume 118 , 2013 , Pages 311-321 ; 09252312 (ISSN) Sadeghi, M ; Emadi Andani, M ; Parnianpour, M ; Fattah, A ; Sharif University of Technology
    2013
    Abstract
    Human motion planning studies are of considerable importance in producing human-like trajectories for various industrial or clinical applications (e.g. assistive robots). In this case, the capability of Central Nervous System (CNS) in generating a large repertoire of actions can be inspirational to develop more efficient motion planning approaches. Here, inspired by structural and functional modularity in the CNS, a novel modular and hierarchical model is developed to plan the sit-to-stand (STS) transfer under varying environmental conditions. In this model, the planning process is distributed among several functionally simple modules. The cooperation of modules enables the model to plan the... 

    Trajectory of human movement during sit to stand: A new modeling approach based on movement decomposition and multi-phase cost function

    , Article Experimental Brain Research ; Volume 229, Issue 2 , 2013 , Pages 221-234 ; 00144819 (ISSN) Sadeghi, M ; Andani, M. E ; Bahrami, F ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The purpose of this work is to develop a computational model to describe the task of sit to stand (STS). STS is an important movement skill which is frequently performed in human daily activities, but has rarely been studied from the perspective of optimization principles. In this study, we compared the recorded trajectories of STS with the trajectories generated by several conventional optimization-based models (i.e., minimum torque, minimum torque change and kinetic energy cost models) and also with the trajectories produced by a novel multi-phase cost model (MPCM). In the MPCM, we suggested that any complex task, such as STS, is decomposable into successive motion phases, so that each... 

    Multijoint coordination during sit-to-stand task in people with non-specific chronic low back pain

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 25, Issue 1 , 2013 ; 10162372 (ISSN) Tajali, S ; Negahban, H ; Shaterzadeh, M. J ; Mehravar, M ; Salehi, R ; Narimani, R ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    Sit-to-stand (STS) is an important functional task affected by low back pain (LBP). It requires fundamental coordination among all segments of the body to control important performance variables such as body's center of mass (CM) and head positions. This study was conducted to determine whether LBPs could coordinate their multiple joints to achieve the task stability to the same extent as healthy controls. About 11 non-specific chronic LBP and 12 healthy control subjects performed STS task at three postural difficulty levels: rigid surface - open eyes (RO), rigid surface - closed eyes (RC) and narrow surface - closed eyes (NC). Motion variability of seven body segments, CM and head positions... 

    The impingement-dislocation risk of total hip replacement: Effects of cup orientation and patient maneuvers

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2012 , Pages 6801-6804 ; 1557170X (ISSN) ; 9781424441198 (ISBN) Ghaffari, M ; Nickmanesh, R ; Tamannaee, N ; Farahmand, F ; Sharif University of Technology
    2012
    Abstract
    Hip dislocation is one of the most frequent complications after total hip arthroplasty. Impingement and dislocation might be caused due to misalignment of the acetabular cup during surgery, or performing dislocation-prone activities afterwards. A finite element model was developed to predict the impingement and dislocation behavior of the prosthetic joint, for different combinations of cup orientation and patient maneuver. Four dislocation-prone activities of daily life and 25 cup orientations were analyzed to determine how close they are to the impingement and subsequent dcislocation events. The angular margin results obtained indicated that the sit-to-stand and standing while bending at... 

    Principal component analysis of kinematic patterns variability during sit to stand in people with non-specific chronic low back pain

    , Article Journal of Mechanics in Medicine and Biology ; Volume 12, Issue 2 , 2012 ; 02195194 (ISSN) Mehravar, M ; Tajali, S ; Negahban, H ; Shaterzadeh, M. J ; Salehi, R ; Narimani, R ; Parnianpour, M ; Sharif University of Technology
    2012
    Abstract
    Sit to stand (STS) task requires variability of all body segments to achieve the stability of the important control variables (i.e., center of mass (CM) and head positions). In this study, the possible differences in the variability patterns of various body segments were investigated between 11 chronic low back pain (LBP) and 12 control subjects during STS task through two types of variability analyses; first by calculating the variability of seven limb angles, CM and head positions across 15 trials and second by principal component analysis (PCA) of seven limb angles. Participants performed the task at 3 postural difficulty levels: rigid surface, open eyes (RO), rigid surface, close eyes... 

    A mixture of modular structures to describe human motor planning level: A new perspective based on motor decomposition

    , Article 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011 ; 2011 , Pages 199-204 ; 9781467310055 (ISBN) Sadeghi, M ; Andani, M. E ; Fattah, A ; Parnianpour, M ; Sharif University of Technology
    Abstract
    A modular hierarchical structure is developed to describe human movement planning level. The modular feature of the proposed model enables it to generalize planning a task. The movements are planned based on decomposing a task into its corresponding subtasks (motion phases). There is a module responsible for one condition. The final plan is constructed using soft computing of the plans proposed by different modules. Each module estimates the kinematics of the joints at the end of each subtask; we call them kinematic estimator modules (KEMs). A timing module estimates the duration of motion and a gating module determines the responsibility of each KEM under different conditions. To evaluate... 

    The effects of postural difficulty conditions on variability of joint kinematic patterns during sit to stand task in normals and patients with non-specific chronic low back pain

    , Article 2011 1st Middle East Conference on Biomedical Engineering, MECBME 2011, 21 February 2011 through 24 February 2011, Sharjah ; 2011 , Pages 300-303 ; 9781424470006 (ISBN) Tajali, S ; Negahban, H ; Yazdi, M. J. S ; Salehi, R ; Mehravar, M ; Parnianpour, M ; Sharif University of Technology
    2011
    Abstract
    Sit to stand (STS) is one of the most important activities of daily living that is shown to be affected in low back pain (LBP) patients. It requires a fundamental coordination action among all segments (DOFs) of the body in order to control important performance variables such as body's center of mass (CM) within base of support (BOS). In this study, possible differences in joint coordination and variability patterns between chronic LBP and healthy control subjects were investigated during STS task. Eleven adults with nonspecific chronic LBP and 12 healthy controls were recruited in the study. The participants performed the task in 3 exerimental conditions including: rigid surface, open eyes... 

    Improving sit-to-stand transition by the saddle-assistive device in the spinal cord injury: A case study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 235, Issue 7 , 2021 , Pages 735-742 ; 09544119 (ISSN) Hojjati Najafabadi, A ; Amini, S ; Farahmand, F ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Physical problems caused by fractures, aging, stroke, and accidents can reduce foot power; these, in the long term, can dwindle the muscles of the waist, thighs, and legs. These conditions provide the basis for the invalidism of the harmed people. In this study, a saddle-walker was designed and evaluated to help people suffering from spinal cord injury and patients with lower limb weakness. This S-AD works based on body weight support against the previously report designs. This saddle-walker consisted of a non-powered four-wheel walker helping to walk and a powered mechanism for the sit-to-stand (STS) transfer. A set of experiments were done on the STS in the use of the standard walker and...