Loading...
Search for: size-effects
0.009 seconds
Total 105 records

    Nano-resonator frequency response based on strain gradient theory

    , Article Journal of Physics D: Applied Physics ; Vol. 47, Issue. 36 , 2014 ; ISSN: 00223727 Miandoab, E. M ; Yousefi Koma, A ; Pishkenari, H. N ; Fathi, M ; Sharif University of Technology
    Abstract
    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results... 

    Dynamic analysis of electrostatically actuated nanobeam based on strain gradient theory

    , Article International Journal of Structural Stability and Dynamics ; Volume 15, Issue 4 , 2014 ; ISSN: 02194554 Miandoab, E. M ; Pishkenari, H. N ; Yousefi Koma, A ; Sharif University of Technology
    Abstract
    In this study, dynamic response of a micro- and nanobeams under electrostatic actuation is investigated using strain gradient theory. To solve the governing sixth-order partial differential equation, mode shapes and natural frequencies of beam using Euler–Bernoulli and strain gradient theories are derived and then compared with classical theory. Galerkin projection is utilized to convert the partial differential equation to ordinary differential equations representing the system mode shapes. Accuracy of proposed one degree of freedom model is verified by comparing the dynamic response of the electrostatically actuated micro-beam with analogue equation and differential quadrature methods.... 

    Effect of coarse aggregate volume on fracture behavior of self compacting concrete

    , Article Construction and Building Materials ; Volume 52 , 15 February , 2014 , Pages 137-145 ; ISSN: 09500618 Nikbin, I. M ; Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Rahmani, E ; Rabbanifar, S ; Eslami, M ; Sharif University of Technology
    Abstract
    This paper presents the effect of volume of coarse aggregate on fracture characteristics of self- compacting concrete (SCC). Based on an experimental programme, a series of three point bending tests were carried out on 58 notched beams. SCC was prepared with coarse aggregate in varying percentages of 30%, 40%, 50% and 60% (as the percentage of the total aggregate volume). For all mixes, the fracture parameters were analyzed by the work-of- fracture method (WFM) and by the size effect method (SEM) to obtain a suitable correlation between these methods which is used to calibrate fracture numerical models. The results showed that with decrease of volume of coarse aggregate from 60% to 30% in... 

    Polysilicon nano-beam model based on modified couple stress and Eringen's nonlocal elasticity theories

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 63, issue , 2014 , p. 223-228 Miandoab, E. M ; Pishkenari, H. N ; Yousefi-Koma, A ; Hoorzad, H ; Sharif University of Technology
    Abstract
    In recent years, extensive experiments have shown that classical continuum theory cannot predict the behavior of mechanical microstructures with small size. To accurately design and analyze micro- and nano-electro-mechanical systems, size-dependent continuum theories should be used. These theories model micro- and nano-electro-mechanical systems with higher accuracy because they include size-dependent parameters. In this paper, polysilicon nano-beam is modeled using modified couple stress and Eringen's nonlocal elasticity theories. First, partial differential equations governing the vibration of nano-beams are converted to a one D.O.F. differential equations using Galerkin method, resulting... 

    Dependency of percolation critical exponents on the exponent of power law size distribution

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 392, Issue 24 , 2013 , Pages 6189-6197 ; ISSN: 03784371 Sadeghnejad, S ; Masihi, M ; King, P. R ; Sharif University of Technology
    2013
    Abstract
    The standard percolation theory uses objects of the same size. Moreover, it has long been observed that the percolation properties of the systems with a finite distribution of sizes are controlled by an effective size and consequently, the universality of the percolation theory is still valid. In this study, the effect of power law size distribution on the critical exponents of the percolation theory of the two dimensional models is investigated. Two different object shapes i.e., stick-shaped and square are considered. These two shapes are the representative of the fractures in fracture reservoirs and the sandbodies in clastic reservoirs. The finite size scaling arguments are used for the... 

    Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory

    , Article Composite Structures ; Volume 102 , 2013 , Pages 72-80 ; 02638223 (ISSN) Tajalli, S. A ; Rahaeifard, M ; Kahrobaiyan, M. H ; Movahhedy, M. R ; Akbari, J ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    In this paper, a size-dependent formulation is developed for Timoshenko beams made of functionally graded materials (FGMs). The developed formulation is based on the strain gradient theory; a non-classical continuum theory able to capture the size-effect in micro-scaled structures. Five new equivalent length scale parameters are introduced as functions of the constituents' length scale parameters. It is shown that the size-dependent static and dynamic behavior of FG micro-beams can be described using these equivalent length scales. The governing differential equations of motion and both classical and non-classical sets of boundary conditions are derived for the proposed strain gradient FG... 

    Longitudinal behavior of strain gradient bars

    , Article International Journal of Engineering Science ; Volume 66-67 , May , 2013 , Pages 44-59 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    In this paper, the strain gradient theory, a non-classical continuum theory capable of capturing the size effect observed in micro-scale structures, is employed in order to investigate the size-dependent mechanical behavior of microbars. For a strain gradient bar, the governing equation of motion and classical and non-classical boundary conditions are derived using Hamilton's principle. Closed form solutions have been analytically obtained for static deformation, natural frequencies and mode shapes of strain gradient bars. The static deformation and natural frequencies of a clamped-clamped microbar subjected to a uniform axial distributed force are derived analytically and the results are... 

    Accurate numerical model for surface scattering, grain boundary scattering, and anomalous skin effect of copper wires

    , Article Proceedings - Winter Simulation Conference ; January , 2013 , Pages 209-210 ; 08917736 (ISSN) ; 9781467348416 (ISBN) Abbaspour, E ; Sarvari, R ; Akbarzadeh, A ; Rostami, M ; Sharif University of Technology
    2013
    Abstract
    In this paper we have studied both DC size effect and anomalous skin effect caused by surface and grain boundary scattering on the resistivity of Cu thin films by a Monte Carlo method. Contribution of each scattering mechanism and the interaction between them are analyzed separately. A simple and fast numerical recursive method is also introduced to guess the structure of electric field and distribution of current inside the thin film to evaluate the surface resistance instead of complicated analytical formulas  

    Strain gradient beam element

    , Article Finite Elements in Analysis and Design ; Volume 68 , June , 2013 , Pages 63-75 ; 0168874X (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The classical continuum theory is neither able to accurately model the mechanical behavior of micro/nano-scale structures nor capable of justifying the size-dependent behavior observed in these structures; so the non-classical continuum theories such as the strain gradient theory have been emerged and developed. In order to enable the finite element method (FEM) to more accurately deal with the problems in micro/nano-scale structures, a size-dependent Euler-Bernoulli beam element is developed based on the strain gradient theory. Compared to the classical Euler-Bernoulli beam element, the nodal displacement vector of the new Euler-Bernoulli beam element has an additional component, i.e. the... 

    Influence of fringing field effect on the pull-in of size dependent micro-beams

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 9, Issue PARTS A AND B , November , 2012 , Pages 577-580 ; 9780791845257 (ISBN) Darvishian, A ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    This study investigates influence of fringing field effect on the voltage dependent behavior of electrostatically actuated micro-beams. For this purpose, the size dependent beam model is used. Strain gradient formulation is utilized to consider size effects. The effect of fringing field effect on the beam's behavior is investigated and it is shown that lack of considering the fringing field effect in the formulation of the problem may lead to considerable error in predicting the size dependent micro-beams behavior under the effect of electrostatic actuation. The results of this research can be used for safe and stable design of electrostatically actuated micro-beams  

    Formulation for static behavior of the viscoelastic Euler-Bernoulli micro-beam based on the modified couple stress theory

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 9, Issue PARTS A AND B , 2012 , Pages 129-135 ; 9780791845257 (ISBN) Taati, E ; Nikfar, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this work an analytical solution is presented for a viscoelastic micro-beam based on the modified couple stress theory which is a non-classical theory in continuum mechanics. The modified couple stress theory has the ability to consider small size effects in micro-structures. It is strongly emphasized that without considering these effects in such structures the solution will be wrong and not suitable for designing systems in micro-scales. In this study correspondence principle is used for deriving constitutive equations for viscoelastic material based on the modified couple stress theory. Governing equilibrium equations are obtained by considering an element of micro-beam. Closedform... 

    Comparative study on adsorption of iodine vapor by silica-supported Cu nanoparticles and micronized copper

    , Article Industrial and Engineering Chemistry Research ; Volume 51, Issue 47 , 2012 , Pages 15315-15323 ; 08885885 (ISSN) Outokesh, M ; Saket, A ; Ahmadi, S. J ; Hosseinpour, M ; Khanchi, A. R ; Sharif University of Technology
    2012
    Abstract
    The current study is aimed at comparison of adsorption behaviors of silica-supported Cu nanoparticles (Si-N-Cu) and micrometric copper powder (Mi-Cu) for uptake of iodine vapor. The Si-N-Cu was synthesized by the decomposition of aqueous Cu(NO3)2 solution at supercritical condition, followed by reduction of the sample by H 2-N2 mixture. The Si-N-Cu sample with 29.4 nm Cu particles adsorbed 95% of I2 at partial pressure 10-5 bar in 1 h, while the 1 μm Mi-Cu adsorbed 51% of iodine in 6 h, indicating higher yield and faster kinetics of the nanometric sample. Theoretical analysis revealed the existence of a strong thermodynamic size effect in the Cu-I2 reaction system, so that molar |ΔG| for 2... 

    Size-dependent genotoxicity of graphene nanoplatelets in human stem cells

    , Article Biomaterials ; Volume 33, Issue 32 , 2012 , Pages 8017-8025 ; 01429612 (ISSN) Akhavan, O ; Ghaderi, E ; Akhavan, A ; Sharif University of Technology
    2012
    Abstract
    Reduced graphene oxide nanoplatelets (rGONPs) were synthesized by sonication of covalently PEGylated GO sheets followed by a chemical reduction using hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs), as a fundamental factor in tissue engineering, were isolated from umbilical cord blood (as a recently proposed source for extracting fresh hMSCs) to investigate, for the first time, the size-dependent cyto- and geno-toxic effects of the rGONPs on the cells. The cell viability test showed significant cell destructions by 1.0 μg/mL rGONPs with average lateral dimensions (ALDs) of 11±4 nm, while the rGO sheets with ALDs of 3.8±0.4 μm could exhibit a significant cytotoxic... 

    Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory

    , Article JVC/Journal of Vibration and Control ; Volume 18, Issue 5 , 2012 , Pages 696-711 ; 10775463 (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Hoore, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, the nonlinear forced-vibration of Euler-Bernoulli beams with large deflections is investigated based on the modified couple stress theory, a non-classical theory capable of capturing size effects. The classical theory is unable to predict the size effects. In systems with the dimensions in order of microns and sub-microns the size effects are very significant. For some specific beams subjected to a concentrated force at its middle as the harmonic exciter, the size-dependent responses are investigated for primary, super-harmonic and sub-harmonic resonances. The results show that the frequency-responses of the system are highly size-dependent  

    Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects

    , Article International Journal of Solids and Structures ; Volume 49, Issue 5 , March , 2012 , Pages 759-770 ; 00207683 (ISSN) Shodja, H. M ; Ahmadzadeh Bakhshayesh, H ; Gutkin, M. Y
    2012
    Abstract
    The elastic behavior of an edge dislocation, which is positioned outside of a nanoscale elliptical inhomogeneity, is studied within the interface elasticity approach incorporating the elastic moduli and surface tension of the interface. The complex potential function method is used. The dislocation stress field and the image force acting on the dislocation are found and analyzed in detail. The difference between the solutions obtained within the classical-elasticity and interface-elasticity approaches is discussed. It is shown that for the stress field, this difference can be significant in those points of the inhomogeneity-matrix interface, where the radius of curvature is smaller and which... 

    A strain gradient functionally graded Euler-Bernoulli beam formulation

    , Article International Journal of Engineering Science ; Volume 52 , 2012 , Pages 65-76 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Rahaeifard, M ; Tajalli, S. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    A size-dependent functionally graded Euler-Bernoulli beam model is developed based on the strain gradient theory, a non-classical theory capable of capturing the size-effect in micro-scaled structures. The governing equation and both classical and non-classical boundary conditions are obtained using variational approach. To develop the new model, the previously used simplifying assumption which considered the length scale parameter to be constant through the thickness is avoided in this work. As a consequence, equivalent length scale parameters are introduced for functionally graded microbeams as functions of the constituents' length scale parameters. Moreover, a generally valid closed-form... 

    Geometrically nonlinear micro-plate formulation based on the modified couple stress theory

    , Article International Journal of Engineering Science ; Volume 51 , 2012 , Pages 292-309 ; 00207225 (ISSN) Asghari, M ; Sharif University of Technology
    2012
    Abstract
    The couple stress theory is a non-classical continuum theory which is capable to capture size effects in small-scale structures. This property makes it appropriate for modeling the structures in micron and sub-micron scales. The purpose of this paper is the derivation of the governing motion equations and boundary conditions for the geometrically nonlinear micro-plates with arbitrary shapes based on the modified version of the couple stress theory. The consistent boundary conditions are provided at smooth parts of the plate periphery and also at the sharp corners of the periphery using variational approach  

    Investigation on the characteristics of micro- and nano-structured W-15 wt.%Cu composites prepared by powder metallurgy route

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 30, Issue 1 , 2012 , Pages 145-151 ; 02634368 (ISSN) Abbaszadeh, H ; Masoudi, A ; Safabinesh, H ; Takestani, M ; Sharif University of Technology
    2012
    Abstract
    The properties of W-15 wt.%Cu composites were investigated by preparing two distinct composites of micrometer and nanoscale structures. Micrometer composite was produced by mixing elemental W and Cu powders and nanometer one was synthesized through a mechanochemical reaction between WO3 and CuO powders. Subsequent compaction and sintering process was performed to ensure maximum possible densification at 1000-1200 °C temperatures. Finally, the behavior of produced samples including relative density, hardness, compressive strength, electrical conductivity, coefficient of thermal expansion (CTE) and room temperature corrosion resistance were examined. Among the composites, nano-structured... 

    Size-dependent pull-in phenomena in nonlinear microbridges

    , Article International Journal of Mechanical Sciences ; Volume 54, Issue 1 , January , 2012 , Pages 306-310 ; 00207403 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2012
    Abstract
    This paper investigates the deflection and static pull-in of microbridges based on the modified couple stress theory, a non-classic continuum theory able to predict the size effects for structures in micron and sub-micron scales. The beam is modeled using EulerBernoulli beam theory and the nonlinearities caused by mid-plane stretching have been considered. It is shown that modified couple stress theory predicts size dependent normalized deflection and pull-in voltage for microbeams while according to classical theory the normalized behavior of microbeams is independent of the size of the beam. According to results, when the thickness of the beam is in order of length scale of the beam... 

    Hydrothermal preparation of TiO2-ZnO nano core-shell structure with quantum size effect

    , Article AIP Conference Proceedings, 12 May 2011 through 15 May 2011 ; Volume 1400 , May , 2011 , Pages 425-428 ; 0094243X (ISSN) ; 9780735409712 (ISBN) Asl, S. K ; Rad, M. K ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Nano sized ZnO on TiO 2 spherical core shells were prepared by using hydrothermal method. The particle size of initial TiO 2 was around 20 nm, and the specific surface area was 50 m2/gr. Different ratios of TiO 2 and ZnO applied to synthesize core shell particle. X-ray diffraction (XRD) used to phase characterization and crystalline size, scanning electron microscopy (SEM) to morphology and microstructure investigations. S. Brunauer, P. H. Emmett and E. Teller method (BET) to find specific surface area, Diffusive UV-visible-NIR spectrometry to bang gap calculations. The results indicate that powders with a shell of zinc oxide in specific range have the quantum size effect. Titanium oxide and...