Loading...
Search for:
smooth-muscle-cells
0.012 seconds
Simulation of NO Production Process from Endothelial Cells and its Effect on Coronary Artery Flow Field
, M.Sc. Thesis Sharif University of Technology ; Firoozabadi, Bahar (Supervisor)
Abstract
Endothelial derived nitric oxide (NO) and its role in regulating the physiological conditions of blood vessels is one of the favorite topics among researchers. The majority of previous studies have focused on nitric oxide transport in blood vessels, less attention has been paid to its vasodilative effects in blood vessels. The main aim of this study is to propose an integrated model to study the effects of endothelial-derived nitric oxide on hemodynamic conditions of blood vessels. Nitric oxide is produced by endothelial cells upon exposure to mechanical forces such as hemodynamic shear stress. The synthesized nitric oxide then diffuses into the neighboring vascular smooth cells, where it...
Thickness as an important parameter in designing vascular grafts
, Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; Nov , 2014 , p. 40-43 ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
Abstract
The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two...
Thickness as an important parameter in designing vascular grafts
, Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, 26 November 2014 through 28 November 2014 ; November , 2014 , Pages 40-43 ; 9781479974177 (ISBN) ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2014
Abstract
The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two...
The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells
, Article Journal of Biomedical Materials Research - Part A ; Volume 104, Issue 7 , 2016 , Pages 1610-1621 ; 15493296 (ISSN) ; Mashayekhan, S ; Vakilian, S ; Ardeshirylajimi, A ; Soleimani, M ; Sharif University of Technology
John Wiley and Sons Inc
Abstract
A combination of topographical cues and controlled release of biochemical factors is a potential platform in controlling stem cells differentiation. In this study the synergistic effect of nanotopography and sustained release of biofunctional transforming growth factor beta 1 (TGF-β1) on differentiation of human Wharton's Jelly-derived mesenchymal stem cell (hWJ-derived UC-MSCs) toward myogenic lineage was investigated. In order to achieve a sustained release of TGF-β1, this factor was encapsulated within chitosan nanoparticles. Afterwards the aligned composite mats were fabricated using poly-E-caprolacton (PCL) containing TGF-β1-loaded chitosan nanoparticles and poly-L-lactic acid (PLLA)....
A Mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis
, Article Journal of the Mechanics and Physics of Solids ; Volume 101 , 2017 , Pages 311-327 ; 00225096 (ISSN) ; Naghdabadi, R ; Sohrabpour, S ; Holzapfel, G. A ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
In-stent restenosis (ISR) is one of the main drawbacks of stent implementation which limits the long-term success of the procedure. Morphological changes occurring within the arterial wall due to stent-induced mechanical injury are a major cause for activation of vascular smooth muscle cells (VSMCs), and the subsequent development of ISR. Considering the theory of volumetric mass growth and adopting a multiplicative decomposition of the deformation gradient into an elastic part and a growth part, we present a mechanobiological model for ISR. An evolution equation is developed for mass growth of the neointima, in which the activation of VSMCs due to stent-induced damage (injury) and the...
Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods
, Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) ; Shamloo, A ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin...
Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods
, Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) ; Shamloo, A ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin...
Healthy and diseasedin vitromodels of vascular systems
, Article Lab on a Chip ; Volume 21, Issue 4 , 2021 , Pages 641-659 ; 14730197 (ISSN) ; Mallone, A ; Nasrollahi, F ; Ostrovidov, S ; Nasiri, R ; Mahmoodi, M ; Haghniaz, R ; Baidya, A ; Salek, M. M ; Darabi, M. A ; Orive, G ; Shamloo, A ; Dokmeci, M. R ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
Royal Society of Chemistry
2021
Abstract
Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability ofin vitromodels for interim analysis have increased the use ofin vitrohuman vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with...