Loading...
Search for: soil-liquefaction
0.006 seconds
Total 27 records

    Requirements for soil-specific correlation between shear wave velocity and liquefaction resistance of sands

    , Article Soil Dynamics and Earthquake Engineering ; Vol. 57, issue , 2014 , pp. 152-163 ; ISSN: 02677261 Ahmadi, M. M ; Akbari Paydar, N ; Sharif University of Technology
    Abstract
    The application of the simplified method for evaluating the liquefaction potential based on shear wave velocity measurements has increased substantially due to its advantages, especially for microzonation of liquefaction potential. In the simplified method, a curve is proposed to correlate the cyclic resistance ratio (CRR) with overburden stress-corrected shear wave velocity (Vs1). However, the uniqueness of this curve for all types of soils is questionable. The objective of this research is to study whether the correlation between CRR and Vs1 is unique or not. Besides, the necessity of developing the soil-specific correlations is also investigated. Based on laboratory test data, a new... 

    Effects of intermediate principal stress parameter on cyclic behavior of sand

    , Article Scientia Iranica ; Vol. 21, Issue. 5 , 2014 , pp. 1566-1576 Jafarzadeh, F ; Zamanian, M ; Sharif University of Technology
    Abstract
    Soils have an anisotropic response, and changing the inclination (α) and magnitude of the major principal stress will affect collapse potential and brittleness, as well as shear strength and shear stiffness. In this paper, the effect of the stress path, with changes in intermediate principal stress, on the dynamic behavior of Babolsar sand, is studied. A series of undrained monotonic and cyclic tests on loose sand with induced anisotropy were conducted by using automatic hollow cylinder apparatus. Special attention was paid to the significant role of the intermediate principal stress parameter (b) in the deformation behavior of the sand during cyclic loading. Results show that at constant α,... 

    Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing

    , Article Soil Dynamics and Earthquake Engineering ; Volume 38 , 2012 , Pages 25-45 ; 02677261 (ISSN) Haeri, S. M ; Kavand, A ; Rahmani, I ; Torabi, H ; Sharif University of Technology
    2012
    Abstract
    Liquefaction-induced lateral spreading has imposed severe damages to many important structures supported on pile foundations during past earthquakes. As a result, evaluation of pile response to lateral spreading is an important step towards safe and resistant design of pile foundations against this destructive phenomenon. Current paper aims to study the response of a group of piles subjected to liquefaction-induced lateral spreading using a large scale 1-g shake table test. General test results including time-histories of accelerations, pore water pressures, displacements and bending moments are presented and discussed in this paper. In addition, distribution of lateral soil pressure on... 

    Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 179-187 ; 10263098 (ISSN) Rahmani, A ; Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    The soil permeability coefficient plays a key role in the process of numerical simulation of the liquefaction phenomenon. Liquefaction causes a considerable increase in soil permeability, due to the creation of easier paths for water flow. The work presented in this paper tries to investigate the effects of permeability coefficient on the results of numerical modeling of the liquefaction phenomenon. To do this, a fully coupled (u-P) formulation is employed to analyze soil displacements and pore water pressures. Two different versions of a well-calibrated critical state bounding surface plasticity model, which possesses the capability to utilize a single set of material parameters for a wide... 

    Evaluation of variation of permeability in liquefiable soil under earthquake loading

    , Article Computers and Geotechnics ; Volume 40 , 2012 , Pages 74-88 ; 0266352X (ISSN) Shahir, H ; Pak, A ; Taiebat, M ; Jeremić, B ; Sharif University of Technology
    2012
    Abstract
    Liquefaction phenomenon is usually accompanied by large amounts of settlement owing to disruption of soil structure. In addition to that, large settlement also occurs by a significant increase in soil permeability during seismic excitation. To properly simulate the post-liquefaction settlement, it is important to take the compressibility properties of the liquefied sand as well as the permeability increase into account. Using initial permeability coefficient in the course of simulation of liquefaction leads to underestimation of settlement. In addition to that, using unrealistic values for permeability may cause erroneous predictions of other aspects of soil behavior. Therefore, an accurate... 

    Dynamic behavior of pile foundations under cyclic loading in liquefiable soils

    , Article Computers and Geotechnics ; Volume 40 , 2012 , Pages 114-126 ; 0266352X (ISSN) Rahmani, A ; Pak, A ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled three-dimensional dynamic analysis is carried out to investigate the dynamic behavior of pile foundations in liquefied ground. A critical state bounding surface plasticity model is used to model soil skeleton, while a fully coupled (u- P) formulation is employed to analyze soil displacements and pore water pressures. Furthermore, in this study, variation of permeability coefficient during liquefaction is taken into account; the permeability coefficient is related to excess pore water pressure ratio. Results of a centrifuge test on pile foundations are used to demonstrate the capability of the model for reliable analysis of piles under dynamic loading. Then, the... 

    Numerical investigation on the behavior of the gravity waterfront structures under earthquake loading

    , Article Ocean Engineering ; Volume 106 , September , 2015 , Pages 152-160 ; 00298018 (ISSN) Khosrojerdi, M ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Lateral Spreading, which usually occurs as a consequence of liquefaction in gently sloped loose saturated sand layers, is known to be a major source of earthquake-induced damages to structures such as quay walls, bridge piers, pipelines, and highway/railways. Therefore evaluation of the liquefaction potential and using appropriate methods for prediction of the adverse consequences of lateral spreading is of great importance. In this study, numerical modeling has been used to study lateral spreading phenomenon behind rigid waterfront structures. Coupled dynamic field equations of the extended Biot's theory with u-P formulation are used for simulating the phenomenon. A fully coupled... 

    Effect of stress anisotropy on the pore water pressure generation of loose sand

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 9 November 2015 through 13 November 2015 ; 2015 , Pages 401-406 Jafarzadeh, F ; Zamanian, M ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2015
    Abstract
    It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. The growth of the excess pore water pressure of saturated sand is dependent on several factors. Changing the inclination and magnitude of the major principal stress with respect to the depositional direction in most cases will increase the collapse potential and brittleness as well as reduce the shear strength and shear stiffness. An experimental program was carried out to study the variation of pore water pressure of cross-anisotropic deposits under anisotropic cyclic loading. A total of 30 undrained cyclic tests were performed... 

    Effect of different parameters on steady state and monotonic liquefaction of gravelly soils

    , Article Geotechnical Special Publication, 17 March 2015 through 21 March 2015 ; Volume GSP 256 , March , 2015 , Pages 2034-2048 ; 08950563 (ISSN) ; 9780784479087 (ISBN) Payan, M ; Ayoubi, P ; Mirmo'Azen, S. M ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2015
    Abstract
    In the current research, the main concern is to verify the behavior of gravelly soils. To that matter, with taking use of CU triaxial tests and variations in parameters of interest, gradation, relative density, isotropic pressure and anisotropy of consolidation during the tests, the effects on the steady state condition and monotonic liquefaction of gravelly soils are investigated. The test results indicated that as the isotropic pressure increases, percentage increase of steady state strength resulting from the increase of relative density will decrease. Moreover, with the increase of anisotropy of consolidation, the effect of relative density on steady state strength and built-up pore... 

    Correlation of shear wave velocity with liquefaction resistance for silty sand based on laboratory study

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 9 November 2015 through 13 November 2015 ; 2015 , Pages 794-799 Akbari-Paydar, N ; Ahmadi, M. M ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2015
    Abstract
    Several methods have been used for the evaluation of liquefaction potential, among which the simplified method is mostly used. In this method, which is mainly based on standard penetration test (SPT), cone penetration test (CPT) and shear wave velocity (Vs) measurement, a boundary curve is provided to separate the liquefiable and non-liquefiable soil zones. Vs measurement is a good alternative method of penetration-based methods (SPT and CPT). This is especially true in micro-zonation of liquefaction potential. Although relatively large studies have been carried out to establish the correlation between Vs and liquefaction resistance for sands; there are uncertainties about the effects of... 

    Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading

    , Article Geotechnical Testing Journal ; Volume 33, Issue 5 , 2010 ; 01496115 (ISSN) Haeri, S. M ; Shakeri, M. R ; Sharif University of Technology
    Abstract
    The paper deals with an experimental study of the undrained cyclic behavior of a natural coarse sand and gravel deposit located in Tehran, a megacity situated on the continental side of the Alborz Mountain in Iran. Membrane compliance that plays a significant role in inhibiting redistribution of pore pressure and liquefaction in undrained cyclic triaxial tests performed on coarse granular soils is studied in this paper. Currently there is no or little satisfactory method for accounting for this phenomenon for gravelly soils, and thus the non-compliant cyclic loading resistanceof granular soils and the evaluation of the behavior of such material in natural and in situ state are not easily... 

    Estimating liquefaction-induced settlement of shallow foundations by numerical approach

    , Article Computers and Geotechnics ; Volume 37, Issue 3 , April , 2010 , Pages 267-279 ; 0266352X (ISSN) Shahir, H ; Pak, A ; Sharif University of Technology
    2010
    Abstract
    Occurrence of liquefaction in saturated sand deposits underlying foundation of structure can cause a wide range of structural damages starting from minor settlement, and ending to general failure due to loss of bearing capacity. If the bearing capacity failure is not the problem, reliable estimation of the liquefaction-induced settlement will be of prime importance in assessment of the overall performance of the structure. Currently, there are few procedures with limited application in practice for estimation of settlement of foundations on liquefied ground. Therefore, development of a general relationship is important from the practical viewpoint. In this paper, the dynamic response of... 

    A performance-based approach for design of ground densification to mitigate liquefaction

    , Article Soil Dynamics and Earthquake Engineering ; Volume 90 , 2016 , Pages 381-394 ; 02677261 (ISSN) Shahir, H ; Pak, A ; Ayoubi, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In performance-based geotechnical earthquake engineering, the required degree and spatial extent of ground densification for mitigation of liquefaction beneath a structure should be determined based on the acceptable levels of performance of foundation. Currently, there is no solution for evaluation of the amount of settlement and tilt of footings constructed on a densified ground which is surrounded by a liquefiable soil. This implies the need for numerical procedures for simulation of seismic behavior of shallow foundations supported on both liquefiable and densified subsoil. In this paper, the dynamic response of shallow foundations on a densified ground is studied using a 3D fully... 

    Comparison of liquefaction evaluation based on SPT and geophysical tests (case study: Mahabad dam, Iran)

    , Article 5th International Conference on Geotechnical and Geophysical Site Characterisation, 5 September 2016 through 9 September 2016 ; Volume 1 , 2016 , Pages 657-661 ; 9780994626110 (ISBN) Shahrabi, M. M ; Jafarzadeh, F ; Akbari Garakani, A ; Eskandari, N ; Banikheir, M ; Jahromi, H. F ; Sharif University of Technology
    Australian Geomechanics Society 
    Abstract
    Standard Penetration Test (SPT) is the most commonly used insitu test for soil characterization, including the liquefaction resistance. Many studies have sought to correlate SPT number to cyclic resistance ratio (CRR) as a frequently-used approach for assessment of liquefaction potential. However, it has been shown that SPT has major deficiencies (e.g., inaccuracy in coarse sands and clays) which have given rise to development and utilization of new characterization methods such as geophysical tests (e.g., down-hole and cross-hole). In this paper, a comparison is made between the results of SPT and geophysical tests in three boreholes through the body and foundation of Mahabad Dam (located... 

    A Performance-Based Approach to the Design of Shallow Foundations Resting on Heterogeneous Subsoil Prone to Liquefaction Hazards

    , Article 4th Geo-China International Conference: Innovative Technologies for Severe Weather and Climate Change, Geo-China 2016, 25 July 2016 through 27 July 2016 ; Volume 2016-January, Issue 264 GSP , 2016 , Pages 47-55 ; 08950563 (ISSN) Pak, A ; Ayoubi, P ; Shahir, H ; El-Badawy S ; Cheng D ; Arab M ; Chinese National Science Foundation; Geo-Institute (G-I) of the American Society of Civil Engineers (ASCE); Shandong Department of Transportation; Shandong University; University of Oklahoma ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2016
    Abstract
    Performance-based design (PBD) has become increasingly important in recent years, especially for the design of foundations rested on sub-soils that are susceptible to liquefaction at seismically active areas. Shallow foundations may fail due to excessive settlement because of liquefaction of the underlying loose saturated cohesion-less sands. Building codes usually do not address the issue of liquefaction-induced settlement of shallow foundations. In this paper, a framework is proposed for calculating the liquefaction-induced settlement of shallow foundations resting on heterogeneous two-layered liquefiable soil by conducting a series of 3D. hydro-mechanical dynamic analyses in a fully... 

    Numerical investigation of the effects of geometric and seismic parameters on liquefaction-induced lateral spreading

    , Article Soil Dynamics and Earthquake Engineering ; Volume 89 , 2016 , Pages 233-247 ; 02677261 (ISSN) Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The lateral movement of a liquefiable soil layer on gentle slopes is the most visible and devastating type of liquefaction-induced ground failure. Recent earthquakes have shown that this phenomenon causes severe damages to coastal structures, pier of the bridges and life-lines by exerting large lateral forces on the structures. In this paper coupled dynamic field equations of extended Biot's theory with u-p formulation are used for simulating the phenomenon and the soil behavior is modeled by a critical state two-surface plasticity model for sands. Furthermore, in this study variation of permeability coefficient during liquefaction is taken into account. The permeability coefficient is... 

    Effect of fines type and content of sand on correlation between shear wave velocity and liquefaction resistance

    , Article Geotechnical and Geological Engineering ; 2016 , Pages 1-20 ; 09603182 (ISSN) Akbari Paydar, N ; Ahmadi, M. M ; Sharif University of Technology
    Springer International Publishing 
    Abstract
    The use of shear wave velocity (Vs) measurements as an in situ test for evaluation of liquefaction potential has increased substantially due to its advantages. Relatively large numbers of studies have been performed to establish the correlation between Vs and liquefaction resistance (CRR) of clean sands. Usually, natural sands contain silt and/or clay, and previous studies have shown that both the amount of fines and their nature influence the values of CRR as well as Vs. Therefore, the CRR–Vs correlations may also be affected by fines content and type of sandy soils. However, effect of fines content and especially fines type of sandy soils on the correlation between Vs and CRR is... 

    Liquefaction evaluation based on CPTu soil classification chart

    , Article Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 5 October 2009 through 9 October 2009, Alexandria ; Volume 2 , 2009 , Pages 1028-1031 ; 9781607500315 (ISBN) Ahmadi, M. M ; Eslami, A ; Kangarani, M. R ; Sharif University of Technology
    Abstract
    Liquefaction is one of the most serious geotechnical hazards that may cause irreparable and financial damages. Based on in-situ testing results, several methods have been developed to evaluate the liquefaction potential. Due to continuous and repeated records, the piezocone (CPTu) has gained wide acceptance among other in-situ tests in geotechnical practice. In this paper, a new approach is proposed for liquefaction potential evaluation based on CPTu results. The new approach is verified by ten CPTu soundings (case histories) derived from different sites. By analyzing the liquefied sites, an area on the soil classification charts was introduced in this paper, showing the soil types which are... 

    Liquefaction-induced settlement of shallow foundations on two-layered subsoil strata

    , Article Soil Dynamics and Earthquake Engineering ; Volume 94 , 2017 , Pages 35-46 ; 02677261 (ISSN) Ayoubi, P ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Geotechnical design codes have been shifted from classical limit equilibrium analysis toward the performance-based procedures. In foundation design, settlement is the most representative parameter for its performance. Settlement of shallow foundations subjected to earthquake loading and its consequences is one of the most outstanding issues which should be considered in designing different structures. In this study, settlement of shallow footing on two-layered subsoil strata under earthquake loading is of concern. The numerical study presented in this research by means of a 3D dynamic fully coupled u-p analysis, addresses the effect of different parameters on shallow foundation settlement... 

    Implementation of image processing technique for measuring membrane penetration in triaxial testing on gravelly soils

    , Article 19th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2017, 17 September 2017 through 22 September 2017 ; 2017 , Pages 381-384 Haeri, S. M ; Shahcheraghi, S. A ; Sharif University of Technology
    19th ICSMGE Secretariat  2017
    Abstract
    The volume change that occurs due to membrane penetration into peripheral voids of gravelly specimens during hydrostatic compression test in a conventional triaxial apparatus is studied by performing a set of hydrostatic compression tests on gravelly specimens with different initial relative densities. During the isotropic loading on the specimens, the total volume changes of the specimens were determined by measuring the amount of water seeping out of the specimens at different loading steps. Image processing technique was implemented simultaneously to determine the skeletal volume changes of the specimens. In this regard specimens were compressed to isotopic pressures from 10 to 500 kPa...