Loading...
Search for: solar
0.021 seconds
Total 748 records

    N-Type conductive small molecule assisted 23.5% efficient inverted perovskite solar cells

    , Article Advanced Energy Materials ; Volume 12, Issue 34 , 2022 ; 16146832 (ISSN) Cao, Q ; Li, Y ; Zhang, Y ; Zhao, J ; Wang, T ; Yang, B ; Pu, X ; Yang, J ; Chen, H ; Chen, X ; Li, X ; Ghasemi, S ; Salari, H ; Hagfeldt, A ; Li, X ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Because of the compatibility with tandem devices and the ability to be manufactured at low temperatures, inverted perovskite solar cells have generated far-ranging interest for potential commercial applications. However, their efficiency remains inadequate owing to various traps in the perovskite film and the restricted hole blocking ability of the electron transport layer. Thus, in this work, a wide-bandgap n-type semiconductor, 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine (B4PyPPM), to modify a perovskite film via an anti-solvent method is introduced. The nitrogen sites of pyrimidine and pyridine rings in B4PyPPM exhibit strong interactions with the undercoordinated lead ions in... 

    Overcome low intrinsic conductivity of Niox through triazinyl modification for highly efficient and stable inverted perovskite solar cells

    , Article Solar RRL ; Volume 6, Issue 9 , 2022 ; 2367198X (ISSN) Yang, J ; Wang, T ; Li, Y ; Pu, X ; Chen, H ; Li, Y ; Yang, B ; Zhang, Y ; Zhao, J ; Cao, Q ; Chen, X ; Ghasemi, S ; Hagfeldt, A ; Li, X ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Nickel oxide (NiOx) is a promising hole transport material in inverted organic-inorganic metal halide perovskite solar cells. However, its low intrinsic conductivity hinders its further improvement in device performance. Here, we employ a trimercapto-s-triazine trisodium salt (TTTS) as a chelating agent of Ni2+ in the NiOx layer to improve its conductivity. Due to the electron-deficient triazine ring, the TTTS complexes with Ni2+ in NiOx via a strong Ni2+-N coordination bond and increases the ratio of Ni3+:Ni2+. The increased Ni3+ concentration adjusts the band structure of NiOx, thus enhancing hole density and mobility, eventually improving the intrinsic conductivity of NiOx. As a result,... 

    Efficient and less-toxic indium-doped mapbi3 perovskite solar cells prepared by metal alloying technique

    , Article Solar RRL ; Volume 6, Issue 9 , 2022 ; 2367198X (ISSN) Tavakoli, M. M ; Fazel, Z ; Tavakoli, R ; Akin, S ; Satapathi, S ; Prochowicz, D ; Yadav, P ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Perovskite materials with ABX3 structure (A: organic, B: metal, and X: halides) have attracted tremendous attention due to their outstanding optoelectronic properties. Herein, a novel approach is developed using chemical vapor deposition (CVD), i.e., metal alloying of halide-perovskite domain via ion-transfer (MAHDI) for the growth of high-quality perovskite films, grown directly from a metal precursor. This technique easily enables us to replace the toxic Pb metal (B site) with other metals using alloying approach. Using the proposed approach, we fabricated stable and efficient Pb–In perovskite solar cells (PSCs) with a maximum power conversion efficiency (PCE) of 21.2%, which is more... 

    Modeling and techno-economic study of a solar reverse osmosis desalination plant

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 9 , 2022 , Pages 8727-8742 ; 17351472 (ISSN) Ebrahimpour, B ; Hajialigol, P ; Boroushaki, M ; Shafii, M. B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, the design of a solar reverse osmosis desalination plant was investigated by integrating various components using TRNSYS and ROSA software. To this goal, a two-stage reverse osmosis system with 50% recovery in the city of Chabahar was modeled. The calculations were performed in three different case studies, i.e., a photovoltaic power plant, a solar collector power plant with Organic Rankine Cycles, and a photovoltaic thermal power plant with Organic Rankine Cycles, with the reverse osmosis desalination plant being a novel investigation. Water production and electrical energy generation of each case study were evaluated both on a daily and yearly bases. The simulation... 

    Performance evaluation of different configurations of solar humidification-dehumidification desalination system with subsurface condenser

    , Article Energy Conversion and Management ; Volume 269 , 2022 ; 01968904 (ISSN) Asgari, B ; Bizhani, M ; Hakkaki Fard, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The solar humidification-dehumidification desalination system with a subsurface condenser is a promising renewable energy-based desalination system. This desalination system is particularly suitable for condensation irrigation in greenhouses, especially where conventional energy sources are limited. A computational model of the system comprising a horizontal solar film evaporator and a subsurface condenser is developed. A previously proposed hybrid analytical–numerical model for horizontal ground heat exchangers is modified for the subsurface condenser. An experimental setup of the subsurface condenser is also built and used to verify the developed model of the subsurface condenser. The... 

    Experimental evaluation of a solar-driven adsorption desalination system using solid adsorbent of silica gel and hydrogel

    , Article Environmental Science and Pollution Research ; Volume 29, Issue 47 , 2022 , Pages 71217-71231 ; 09441344 (ISSN) Zarei Saleh Abad, M ; Behshad Shafii, M ; Ebrahimpour, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Nowadays, the world is facing a shortage of fresh water. Utilizing adsorbent materials to adsorb air moisture is a suitable method for producing freshwater, especially combining the adsorption desalination system with solar energy devices such as solar collectors. The low temperature of solar collectors has caused some water to remain in the adsorbents in the desorption process and has reduced the possibility of using these systems. In this research, for the first time, an evacuated tube collector (ETC) is used as an adsorbent bed so that the temperature of the desorption process reaches higher values and as a result, more fresh water is expected to produced. In this study, two adsorption... 

    Satellite pose estimation using Earth radiation modeled by artificial neural networks

    , Article Advances in Space Research ; Volume 70, Issue 8 , 2022 , Pages 2195-2207 ; 02731177 (ISSN) Nasihati Gourabi, F ; Kiani, M ; Pourtakdoust, S. H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The thermal energy received by each surface of an Earth-orbiting satellite strongly depends on its position and orientation. In this sense, simultaneous orbit and attitude estimation (SOAE) using the surface temperature data has been focused in the present study. The Earth infrared (IR) radiation and the Earth's top-of-atmosphere (TOA) albedo are two key sources of radiation affecting the satellite surface temperature rate. The Earth's radiation information has been monitored for the past two decades by the Clouds and the Earth's Radiant Energy System (CERES) project, producing a comprehensive set of Earth radiation budget (ERB) data for climate, weather and applied science research. The... 

    Spatio-temporal variation of hydro-climatic variables and extreme indices over Iran based on reanalysis data

    , Article Stochastic Environmental Research and Risk Assessment ; Volume 36, Issue 11 , 2022 , Pages 3725-3752 ; 14363240 (ISSN) Malaekeh, S. M ; Safaie, A ; Shiva, L ; Tabari, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    A comprehensive investigation of historical hydro-climatic changes at a county level is an essential prerequisite of developing any adaptation or mitigation strategies to deal with the destructive impacts of climate change. In this study, spatial distributions and trends in thirty-seven hydro-climatic mean and extreme indices across Iran were analyzed based on the state-of-the-art reanalysis datasets (ERA5-Land and AgERA5) at the county level from 1986 to 2015 using several nonparametric approaches such as multiple modified Mann–Kendall statistical tests and Sen’s Slope estimator. Their interannual oscillations were also examined using continuous wavelet transform to portray a complete... 

    Experimental evaluation of the effect of boulders and fines in biodegradable organic materials on the improvement of solar stills

    , Article Solar Energy ; Volume 247 , 2022 , Pages 453-467 ; 0038092X (ISSN) Ebrahimpour, B ; Behshad Shafii, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, for the first time, the effect of primary particles (boulders) and secondary particles (fines) in organic mixtures of coffee, black walnut hull, madder, and tea (which are cheap, abundant, and biodegradable) on the improvement of solar stills' daily efficiency is evaluated as an alternative to metal-based nanofluids. A laboratory still simulator is utilised under laboratory conditions to measure the organic mixture's behaviour accurately. Furthermore, the effect of the concentration of organic mixtures and the particle size of organic materials are investigated, as well as the effect of boulders and fines, independently. In addition, two identical solar still systems are... 

    Performance evaluation of the solar-driven multi-ejector refrigeration cycle without an auxiliary heat source

    , Article Applied Thermal Engineering ; Volume 217 , 2022 ; 13594311 (ISSN) Beyrami, J ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Solar-driven ejector refrigeration (SER) systems have been granted special attention as a green and sustainable replacement for conventional vapor compression cooling systems. However, despite their significant advantages, SER systems suffer from a relatively low coefficient of performance and failure at high ambient temperatures and low solar radiations. Therefore, the need for an auxiliary heat source and cooling system has hindered their adoption in practice. In an attempt to eliminate the need for an auxiliary heat source and cooling system, this contribution puts forward a novel Solar-driven Multi-Ejector Refrigeration (SMER) system with an internal heat exchanger, a regenerator, and a... 

    Transactive energy management of V2G-capable electric vehicles in residential buildings: an milp approach

    , Article IEEE Transactions on Sustainable Energy ; Volume 13, Issue 3 , 2022 , Pages 1734-1743 ; 19493029 (ISSN) Saber, H ; Ranjbar, H ; Fattaheian-Dehkordi, S ; Moeini Aghtaie, M ; Ehsan, M ; Shahidehpour, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper proposes a new energy management model for residential buildings to handle the uncertainties of demand and on-site PV generation. For this purpose, the building energy management system (BEMS) organizes a transactive energy (TE) market among plug-in electric vehicles (PEVs) to determine their charge/discharge scheduling. According to the proposed TE framework, the PEV owners get reimbursed by the BEMS for the flexibility they offer. In this regard, the PEV owners submit their response curves for reimbursement upon arrival. Then, the BEMS solves an optimization problem to maximize its own profit and determine the real-time TE market-clearing price. Afterward, based on the clearing... 

    A risk-based resilient distribution system planning model against extreme weather events

    , Article IET Renewable Power Generation ; Volume 16, Issue 10 , 2022 , Pages 2125-2135 ; 17521416 (ISSN) Zare Bahramabadi, M ; Ehsan, M ; Farzin, H ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Due to the accelerated climate change, it is anticipated that the number and severity of natural disasters such as hurricanes, blizzards, and floods will be increased in the coming years. In this regard, this paper presents a distribution system planning model to improve the system resilience against hurricane. A scenario-based mathematical model is proposed to capture the random nature of weather events. Moreover, a stochastic optimization model is developed to simultaneously harden the distribution lines and place different types of distributed generation (DG) units such as microturbines (MTs), wind turbines (WTs), and photovoltaic cells (PVs). The conditional value at risk (CVaR) is used... 

    A comparative study on bifacial photovoltaic/thermal modules with various cooling methods

    , Article Energy Conversion and Management ; Volume 263 , 2022 ; 01968904 (ISSN) Ma, T ; Kazemian, A ; Habibollahzade, A ; Salari, A ; Gu, W ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The bifacial photovoltaic/thermal module is an emerging concept that can provide electricity and heat simultaneously, taking advantage of both front and rear sides of the panel; therefore, exhibiting a better performance compared to a conventional photovoltaic module or photovoltaic thermal module. In this study, four configurations of the bifacial photovoltaic/thermal module with different cooling methods have been proposed, i.e., cooling performed at either the upper or the lower surface, in parallel (applied to both upper and lower surfaces having similar start/endpoints), and swinging air back and forth (by guiding the air over the upper and lower surfaces, respectively). The... 

    The photochromic switchable imidazoles: Their genesis, development, synthesis, and characterization

    , Article Dyes and Pigments ; Volume 203 , 2022 ; 01437208 (ISSN) Bagheri, M ; Mirzaee, M ; Hosseini, S ; Gholamzadeh, P ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Switchable photochromic dyes have benefited greatly from the use of heterocyclic chemicals. The imidazole group is particularly essential because it can be transformed into dimers, which can then be radicalized in the presence of light photons. Imidazole dimers have been optimized throughout thirty years of research, allowing derivatives with diverse colors, quick reversibility, and sensitivity to different wavelengths from UV to near IR ranges. These imidazole dimers are interesting to be used in the matrices of polymers, hydrogels, glasses, solar cells, and even pharmaceuticals. The goal of this review is to look at the history, development, and future of imidazole dimers. We will also... 

    Lamination methods for the fabrication of perovskite and organic photovoltaics

    , Article Materials Horizons ; Volume 9, Issue 10 , 2022 , Pages 2473-2495 ; 20516347 (ISSN) Ghaffari, A ; Saki, Z ; Taghavinia, N ; Malekshahi Byranvand, M ; Saliba, M ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Perovskite solar cells (PSCs) have shown rapid progress in a decade of extensive research and development, aiming now towards commercialization. However, the development of more facile, reliable, and reproducible manufacturing techniques will be essential for industrial production. Many lamination methods have been initially designed for organic photovoltaics (OPVs), which are conceptually similar to PSCs. Lamination could provide a low-cost and adaptable technique for the roll-to-roll production of solar cells. This review presents an overview of lamination methods for the fabrication of PSCs and OPVs. The lamination of different electrodes consisting of various materials such as metal back... 

    Scheduling and sizing of campus microgrid considering demand response and economic analysis

    , Article Sensors ; Volume 22, Issue 16 , 2022 ; 14248220 (ISSN) Bin, L ; Shahzad, M ; Javed, H ; Muqeet, H. A ; Akhter, M. N ; Liaqat, R ; Hussain, M. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Current energy systems face multiple problems related to inflation in energy prices, reduction of fossil fuels, and greenhouse gas emissions which are disturbing the comfort zone of energy consumers and the affordability of power for large commercial customers. These kinds of problems can be alleviated with the help of optimal planning of demand response policies and with distributed generators in the distribution system. The objective of this article is to give a strategic proposition of an energy management system for a campus microgrid (µG) to minimize the operating costs and to increase the self-consuming energy of the green distributed generators (DGs). To this end, a real-time based... 

    Techno-economic assessment of a novel power-to-liquid system for synthesis of formic acid and ammonia, based on CO2 electroreduction and alkaline water electrolysis cells

    , Article Renewable Energy ; Volume 187 , 2022 , Pages 1224-1240 ; 09601481 (ISSN) Bahnamiri, F. K ; Khalili, M ; Pakzad, P ; Mehrpooya, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The power-to-liquid concept is a promising strategy to convert the power plants' flue gas to value-added liquid fuels using renewable energy. This technology could potentially reduce global greenhouse gases emissions and mitigate the environmental problems associated with the fossil fuels industry. In this regard, the main objective of the present study is to propose a novel power-to-liquid plant for the synthesis of formic acid and ammonia from power plants' flue gas, emphasizing the role of electrochemical technologies and renewable energy. The system's basis is developed by the integration of CO2 electroreduction cell, alkaline water electrolysis cell, and photovoltaic panel technologies.... 

    Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach

    , Article Renewable Energy ; Volume 186 , 2022 , Pages 889-903 ; 09601481 (ISSN) Jahangiri, M ; Rezaei, M ; Mostafaeipour, A ; Goojani, A.R ; Saghaei, H ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Renewable hydrogen production plays a key role in transitioning to a hydrogen economy. For this, developing countries are encouraged to keep up with industrialized nations. As such, this study seeks to evaluate the potential of all capital cities of Iran in terms of solar-based hydrogen production and prioritize the nominated alternatives. This step is highly valued because finding the most suitable place for this purpose can lead to substantial outcomes and consequently avoid failure. Therefore, here a 20-kW solar power plant is simulated by PVsyst 6.7 software and meteorological data of 31 capital cities is extracted using Meteonorm 7.1 software. Considering all losses associated with... 

    Dynamic simulation of a solar ejector-based trigeneration system using TRNSYS-EES co-simulator

    , Article Energy Science and Engineering ; Volume 10, Issue 3 , 2022 , Pages 707-725 ; 20500505 (ISSN) Pourmoghadam, P ; Jafari Mosleh, H ; Karami, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    In this paper, a new configuration of a solar combined cooling, heating, and power (CCHP) system is proposed to recover the waste thermal energy of a steam power plant, which provides the cooling and heating needs of an apartment complex located in Tehran. The required energy of the system is supplied by the parabolic trough solar collectors (PTCs) and, if necessary, an auxiliary heater is also used. An ejector refrigeration cycle (ERC) and a steam Rankine cycle are used for cooling and power generation, respectively. The cycle is dynamically modeled over a year using a TRNSYS-EES co-simulator. It is found that the highest Rankine cycle efficiency is obtained in the cold months (January)... 

    CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Samiezadeh, S ; Khodaverdian, R ; Doranehgard, M. H ; Chehrmonavari, H ; Xiong, Q ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, we perform numerical simulations to investigate the thermal and flow characteristics of a parabolic trough solar collector equipped with a porous receiver tube and internal longitudinal fins. The heat transfer medium is a synthetic oil-Cu-Al2O3 hybrid nanofluid. We examine the thermal characteristics of the nanofluid in response to variations in several system parameters. We find that at Reynolds numbers between 5 × 103 and 5 × 105, increasing the volume fraction of Cu nanoparticles can increase the temperature gain at the exit of the receiver tube by 6.4%. Furthermore, the temperature gradient in the cross-section of the collector increases as the direct normal solar...