Loading...
Search for: spherical-vessels
0.005 seconds

    Residual stress analysis of autofrettaged thick-walled spherical pressure vessel

    , Article International Journal of Pressure Vessels and Piping ; Volume 87, Issue 7 , July , 2010 , Pages 396-401 ; 03080161 (ISSN) Maleki, M ; Farrahi, G. H ; Haghpanah Jahromi, B ; Hosseinian, E ; Sharif University of Technology
    2010
    Abstract
    In this study, residual stress distributions in autofrettaged homogenous spherical pressure vessels subjected to different autofrettage pressures are evaluated. Results are obtained by developing an extension of variable material properties (VMP) method. The modification makes VMP method applicable for analyses of spherical vessels based on actual material behavior both in loading and unloading and considering variable Bauschinger effect. The residual stresses determined by employing finite element method are compared with VMP results and it is demonstrated that the using of simplified material models can cause significant error in estimation of hoop residual stress, especially near the... 

    Wall thickness optimization of thick-walled spherical vessel using thermo-elasto-plastic concept

    , Article International Journal of Pressure Vessels and Piping ; Volume 82, Issue 5 , 2005 , Pages 379-385 ; 03080161 (ISSN) Kargarnovin, M. H ; Rezai Zarei, A ; Darijani, H ; Sharif University of Technology
    2005
    Abstract
    A study of thick-walled spherical vessels under steady-state radial temperature gradients using elasto-plastic analysis is reported. By considering a maximum plastic radius and using the thermal autofrettage method for the strengthening mechanism, the optimum wall thickness of the vessel for a given temperature gradient across the vessel is obtained. Finally, in the case of thermal loading on a vessel, the effect of convective heat transfer on the optimum thickness is considered, and a general formula for the optimum thickness and design graphs for several different cases are presented. © 2004 Elsevier Ltd. All rights reserved  

    Design of spherical vessels under steady-state thermal loading using thermo-elasto-plastic concept

    , Article International Journal of Pressure Vessels and Piping ; Volume 86, Issue 2-3 , 2009 , Pages 143-152 ; 03080161 (ISSN) Darijani, H ; Kargarnovin, M. H ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    Governing equilibrium equations of thick-walled spherical vessels made of material following linear strain hardening and subjected to a steady-state radial temperature gradient using elasto-plastic analysis are derived. By considering a maximum plastic radius and using the concept of thermal autofrettage for the strengthening mechanism, the optimum wall thickness of the vessel for a given temperature gradient across the wall thickness is obtained. Finally, in the case of thermal loading on a vessel, the effect of convective heat transfer on the optimum thickness is studied and a general formula for the optimum wall thickness and design graphs for several different cases are presented. © 2008... 

    Elastoplastic stress study in thick-walled spherical vessels considering finite deformation

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Darijani, H ; Shamsaei, N ; Naghdabadi, R ; Danesh Sararoudi, M ; Sharif University of Technology
    2006
    Abstract
    An exact elasto-plastic analytical solution for large-strained internal pressurized thick-walled spherical vessels made of elastic-linear and nonlinear hardening material is derived in this paper. This solution is based on the notion of finite strains, the deformation theory of Hencky and the yield criteria of von Mises and Tresca. Nolinear elastic solution of an axisymetric boundary value problem is used as a basis to generate its inelastic solution, whereas the Hyper-elastic constitutive equation is invoked to represent the material response in the elastic region. This method treats the material parameters as field variables. Their distributions are obtained in an iterative manner using...