Loading...
Search for: squared-correlation-coefficients
0.011 seconds

    Prediction of standard enthalpy of combustion of pure compounds using a very accurate group-contribution-based method

    , Article Energy and Fuels ; Volume 25, Issue 6 , April , 2011 , Pages 2651-2654 ; 08870624 (ISSN) Gharagheizi, F ; Mirkhani, S. A ; Tofangchi Mahyari, A. R ; Sharif University of Technology
    2011
    Abstract
    The artificial neural network-group contribution (ANN-GC) method is applied to estimate the standard enthalpy of combustion of pure chemical compounds. A total of 4590 pure compounds from various chemical families are investigated to propose a comprehensive and predictive model. The obtained results show the squared correlation coefficient (R 2) of 0.999 99, root mean square error of 12.57 kJ/mol, and average absolute deviation lower than 0.16% for the estimated properties from existing experimental values  

    Prediction of natural gas flow through chokes using support vector machine algorithm

    , Article Journal of Natural Gas Science and Engineering ; Vol. 18, issue , 2014 , pp. 155-163 ; ISSN: 18755100 Nejatian, I ; Kanani, M ; Arabloo, M ; Bahadori, A ; Zendehboudi, S ; Sharif University of Technology
    Abstract
    In oil and gas fields, it is a common practice to flow liquid and gas mixtures through choke valves. In general, different types of primary valves are employed to control pressure and flow rate when the producing well directs the natural gas to the processing equipment. In this case, the valve normally is affected by elevated levels of flow (or velocity) as well as solid materials suspended in the gas phase (e.g., fine sand and other debris). Both surface and subsurface chokes may be installed to regulate flow rates and to protect the porous medium and surface facilities from unusual pressure instabilities.In this study a reliable, novel, computer based predictive model using Least-Squares... 

    Prediction of limiting activity coefficients for binary vapor-liquid equilibrium using neural networks

    , Article Fluid Phase Equilibria ; Volume 433 , 2017 , Pages 174-183 ; 03783812 (ISSN) Ahmadian Behrooz, H ; Bozorgmahry Boozarjomehry, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The activity coefficient at infinite dilution is a representative of the limiting non-ideality of a solute in a mixture. Various methods for the prediction of infinite dilution activity coefficients (IDACs) have been developed. Artificial neural networks are powerful mapping tools for nonlinear function approximations. Accordingly, an artificial neural network model is proposed for the prediction of the IDACs of binary systems where the properties of the individual components are used as inputs to the network. The input parameters of the neural network are the mixture temperature, critical temperature, critical pressure, critical volume, molecular weight, dipole moment and the acentric... 

    Prediction of CO2-oil molecular diffusion using adaptive neuro-fuzzy inference system and particle swarm optimization technique

    , Article Fuel ; Volume 181 , 2016 , Pages 178-187 ; 00162361 (ISSN) Ejraei Bakyani, A. R ; Sahebi, H ; Ghiasi, M. M ; Mirjordavi, N ; Esmaeilzadeh, F ; Lee, M ; Bahadori, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    The quantification of carbon dioxide (CO2) dissolution in oil is crucial in predicting the potential and long-term behavior of CO2 in reservoir during secondary and tertiary oil recovery. Accurate predicting carbon dioxide molecular diffusion coefficient is a key parameter during carbon dioxide injection into oil reservoirs. In this study a new model based on adaptive neuro-fuzzy inference systems (ANFIS) is designed and developed for accurate prediction of carbon dioxide diffusivity in oils at elevated temperature and pressures. Particle Swarm Optimization (PSO) as population based stochastic search algorithms was applied to obtain the optimal ANFIS model parameters. Furthermore, a simple... 

    Prediction of absolute entropy of ideal gas at 298 K of pure chemicals through GAMLR and FFNN

    , Article Energy Conversion and Management ; Volume 52, Issue 1 , 2011 , Pages 630-634 ; 01968904 (ISSN) Fazeli, A ; Bagheri, M ; Ghaniyari-Benis, S ; Aslebagh, R ; Kamaloo, E ; Sharif University of Technology
    2011
    Abstract
    Thermodynamical optimization for energy conversion system can be performed by decreasing entropy generation. For calculation of entropy, we need to know entropy of ideal gases at 298 K as a reference point. Entropy is a thermodynamic quantity which is not easily measured and prediction of entropy by molecular structures for new designed molecules may be a challenge. An easy and accurate equation for prediction of absolute entropy of pure ideal gas at 298 K was introduced for the first time based on the quantitative structure property relationship (QSPR) approach. Thousand seven hundred pure chemical compounds and 3224 molecular descriptors were used for finding this easy equation by genetic...