Loading...
Search for: state-of-the-art
0.017 seconds
Total 214 records

    Greener, nonhalogenated solvent systems for highly efficient Perovskite solar cells

    , Article Advanced Energy Materials ; Volume 8, Issue 21 , 25 July , 2018 ; 16146832 (ISSN) Yavari, M ; Mazloum Ardakani, M ; Gholipour, S ; Tavakoli, M. M ; Turren Cruz, S. H ; Taghavinia, N ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    All current highest efficiency perovskite solar cells (PSCs) use highly toxic, halogenated solvents, such as chlorobenzene (CB) or toluene (TLN), in an antisolvent step or as solvent for the hole transporter material (HTM). A more environmentally friendly antisolvent is highly desirable for decreasing chronic health risk. Here, the efficacy of anisole (ANS), as a greener antisolvent for highest efficiency PSCs, is investigated. The fabrication inside and outside of the glovebox showing high power conversion efficiencies of 19.9% and 15.5%, respectively. Importantly, a fully nonhalogenated solvent system is demonstrated where ANS is used as both the antisolvent and the solvent for the HTM.... 

    Spotlight on kinetic and equilibrium adsorption of a new surfactant onto sandstone minerals: A comparative study

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 50 , May , 2015 , Pages 12-23 ; 18761070 (ISSN) Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2015
    Abstract
    This paper presents a state of the art review of adsorption models for a new plant-based surfactant adsorption onto sandstone minerals. The adsorption data at both kinetic and equilibrium modes were obtained from batch experiments. Four adsorption kinetic models, five two-parameter, and six three-parameter equilibrium models were used for interpretation of the obtained data. Among the two and three-parameter isotherm models applied, the Jovanovic and the Khan isotherms showed the best fit, respectively. And the pseudo-second order model presented a better fit than other kinetic models. Finally, a computer-based modeling approach was developed and used for predicting the kinetics of... 

    Deep relative attributes

    , Article 13th Asian Conference on Computer Vision, ACCV 2016, 20 November 2016 through 24 November 2016 ; Volume 10115 LNCS , 2017 , Pages 118-133 ; 03029743 (ISSN); 9783319541921 (ISBN) Souri, Y ; Noury, E ; Adeli, E ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Visual attributes are great means of describing images or scenes, in a way both humans and computers understand. In order to establish a correspondence between images and to be able to compare the strength of each property between images, relative attributes were introduced. However, since their introduction, hand-crafted and engineered features were used to learn increasingly complex models for the problem of relative attributes. This limits the applicability of those methods for more realistic cases. We introduce a deep neural network architecture for the task of relative attribute prediction. A convolutional neural network (ConvNet) is adopted to learn the features by including an... 

    A reliable ensemble-based classification framework for glioma brain tumor segmentation

    , Article Signal, Image and Video Processing ; Volume 14, Issue 8 , 2020 , Pages 1591-1599 Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Glioma is one of the most frequent primary brain tumors in adults that arise from glial cells. Automatic and accurate segmentation of glioma is critical for detecting all parts of tumor and its surrounding tissues in cancer detection and surgical planning. In this paper, we present a reliable classification framework for detection and segmentation of abnormal tissues including brain glioma tumor portions such as edemas and tumor core. This framework learns weighted features extracted from the 3D cubic neighborhoods regarding to gray-level differences that indicate the spatial relationships among voxels. In addition to intensity values in each slice, we consider sets of three consecutive... 

    COMET: Context-Aware IoU-guided network for small object tracking

    , Article 15th Asian Conference on Computer Vision, ACCV 2020, 30 November 2020 through 4 December 2020 ; Volume 12623 LNCS , 2021 , Pages 594-611 ; 03029743 (ISSN); 9783030695316 (ISBN) Marvasti Zadeh, S. M ; Khaghani, J ; Ghanei Yakhdan, H ; Kasaei, S ; Cheng, L ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    We consider the problem of tracking an unknown small target from aerial videos of medium to high altitudes. This is a challenging problem, which is even more pronounced in unavoidable scenarios of drastic camera motion and high density. To address this problem, we introduce a context-aware IoU-guided tracker (COMET) that exploits a multitask two-stream network and an offline reference proposal generation strategy. The proposed network fully exploits target-related information by multi-scale feature learning and attention modules. The proposed strategy introduces an efficient sampling strategy to generalize the network on the target and its parts without imposing extra computational... 

    Efficient scale estimation methods using lightweight deep convolutional neural networks for visual tracking

    , Article Neural Computing and Applications ; 2021 ; 09410643 (ISSN) Marvasti Zadeh, S. M ; Ghanei Yakhdan, H ; Kasaei, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In recent years, visual tracking methods that are based on discriminative correlation filters (DCFs) have been very promising. However, most of these methods suffer from a lack of robust scale estimation skills. Although a wide range of recent DCF-based methods exploit the features that are extracted from deep convolutional neural networks (CNNs) in their translation model, the scale of the visual target is still estimated by hand-crafted features. Whereas the exploitation of CNNs imposes a high computational burden, this paper exploits pre-trained lightweight CNNs models to propose two efficient scale estimation methods, which not only improve the visual tracking performance but also... 

    Multiple human 3D pose estimation from multiview images

    , Article Multimedia Tools and Applications ; Volume 77, Issue 12 , June , 2018 , Pages 15573-15601 ; 13807501 (ISSN) Ershadi Nasab, S ; Noury, E ; Kasaei, S ; Sanaei, E ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Multiple human 3D pose estimation is a challenging task. It is mainly because of large variations in the scale and pose of humans, fast motions, multiple persons in the scene, and arbitrary number of visible body parts due to occlusion or truncation. Some of these ambiguities can be resolved by using multiview images. This is due to the fact that more evidences of body parts would be available in multiple views. In this work, a novel method for multiple human 3D pose estimation using evidences in multiview images is proposed. The proposed method utilizes a fully connected pairwise conditional random field that contains two types of pairwise terms. The first pairwise term encodes the spatial... 

    Supervised spatio-temporal kernel descriptor for human action recognition from RGB-depth videos

    , Article Multimedia Tools and Applications ; Volume 77, Issue 11 , 2018 , Pages 14115-14135 ; 13807501 (ISSN) Asadi Aghbolaghi, M ; Kasaei, S ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    One of the most challenging tasks in computer vision is human action recognition. The recent development of depth sensors has created new opportunities in this field of research. In this paper, a novel supervised spatio-temporal kernel descriptor (SSTKDes) is proposed from RGB-depth videos to establish a discriminative and compact feature representation of actions. To enhance the descriptive and discriminative ability of the descriptor, extracted primary kernel-based features are transformed into a new space by exploiting a supervised training strategy; i.e., large margin nearest neighbor (LMNN). The LMNN highly reduces the error of a nearest neighbor classifier by minimizing the intra-class... 

    Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and hough circles algorithm

    , Article Cardiovascular Engineering and Technology ; Volume 10, Issue 3 , 2019 , Pages 490-499 ; 1869408X (ISSN) Mohammadi, S ; Mohammadi, M ; Dehlaghi, V ; Ahmadi, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Purpose: An abdominal aortic aneurysm (AAA) is known as a cardiovascular disease involving localized deformation (swelling or enlargement) of aorta occurring between the renal and iliac arteries. AAA would jeopardize patients’ lives due to its rupturing risk, so prompt recognition and diagnosis of this disorder is vital. Although computed tomography angiography (CTA) is the preferred imaging modality used by radiologist for diagnosing AAA, computed tomography (CT) images can be used too. In the recent decade, there has been several methods suggested by experts in order to find a precise automated way to diagnose AAA without human intervention base on CT and CTA images. Despite great... 

    Uncalibrated multi-view multiple humans association and 3D pose estimation by adversarial learning

    , Article Multimedia Tools and Applications ; 2020 Ershadi Nasab, S ; Kasaei, S ; Sanaei, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Multiple human 3D pose estimation is a useful but challenging task in computer vison applications. The ambiguities in estimation of 2D and 3D poses of multiple persons can be verified by using multi-view frames, in which the occluded or self-occluded body parts of some persons might be visible in other camera views. But, when cameras are moving and uncalibrated, estimating the association of multiple human body parts among different camera views is a challenging task. This paper presents novel methods for multiple human 3D pose estimation and pose association in multi-view camera frames in an uncalibrated camera setup using an adversarial learning framework. The generator is a 3D pose... 

    Lightweight residual densely connected convolutional neural network

    , Article Multimedia Tools and Applications ; Volume 79, Issue 35-36 , 2020 , Pages 25571-25588 Fooladgar, F ; Kasaei, S ; Sharif University of Technology
    Springer  2020
    Abstract
    Extremely efficient convolutional neural network architectures are one of the most important requirements for limited-resource devices (such as embedded and mobile devices). The computing power and memory size are two important constraints of these devices. Recently, some architectures have been proposed to overcome these limitations by considering specific hardware-software equipment. In this paper, the lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network. The proposed method decreases the cost of training and inference processes without using any special... 

    NRSfPP: non-rigid structure-from-perspective projection

    , Article Multimedia Tools and Applications ; 2020 Sepehrinour, M ; Kasaei, S ; Sharif University of Technology
    Springer  2020
    Abstract
    A state-of-the-art algorithm for perspective projection reconstruction of non-rigid surfaces from single-view and realistic videos is proposed. It overcomes the limitations arising from the usage of orthographic camera model and also the complexity and non-linearity issues of perspective projection equation. Unlike traditional non-rigid structure-from-motion (NRSfM) methods, which have been studied only on synthetic datasets and controlled lab environments that require some prior constraints (such as manually segmented objects, limited rotations and occlusions, and full-length trajectories); the proposed method can be used in realistic video sequences. In addition, contrary to previous... 

    Uncalibrated multi-view multiple humans association and 3D pose estimation by adversarial learning

    , Article Multimedia Tools and Applications ; Volume 80, Issue 2 , 2021 , Pages 2461-2488 ; 13807501 (ISSN) Ershadi Nasab, S ; Kasaei, S ; Sanaei, E ; Sharif University of Technology
    Springer  2021
    Abstract
    Multiple human 3D pose estimation is a useful but challenging task in computer vison applications. The ambiguities in estimation of 2D and 3D poses of multiple persons can be verified by using multi-view frames, in which the occluded or self-occluded body parts of some persons might be visible in other camera views. But, when cameras are moving and uncalibrated, estimating the association of multiple human body parts among different camera views is a challenging task. This paper presents novel methods for multiple human 3D pose estimation and pose association in multi-view camera frames in an uncalibrated camera setup using an adversarial learning framework. The generator is a 3D pose... 

    Adaptive exploitation of pre-trained deep convolutional neural networks for robust visual tracking

    , Article Multimedia Tools and Applications ; Volume 80, Issue 14 , 2021 , Pages 22027-22076 ; 13807501 (ISSN) Marvasti-Zadeh, S.M ; Ghanei Yakhdan, H ; Kasaei, S ; Sharif University of Technology
    Springer  2021
    Abstract
    Due to the automatic feature extraction procedure via multi-layer nonlinear transformations, the deep learning-based visual trackers have recently achieved a great success in challenging scenarios for visual tracking purposes. Although many of those trackers utilize the feature maps from pre-trained convolutional neural networks (CNNs), the effects of selecting different models and exploiting various combinations of their feature maps are still not compared completely. To the best of our knowledge, all those methods use a fixed number of convolutional feature maps without considering the scene attributes (e.g., occlusion, deformation, and fast motion) that might occur during tracking. As a... 

    A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

    , Article Bio-Design and Manufacturing ; 2021 ; 20965524 (ISSN) Sarraf, M ; Rezvani Ghomi, E ; Alipour, S ; Ramakrishna, S ; Liana Sukiman, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical... 

    NRSfPP: non-rigid structure-from-perspective projection

    , Article Multimedia Tools and Applications ; Volume 80, Issue 6 , 2021 , Pages 9093-9108 ; 13807501 (ISSN) Sepehrinour, M ; Kasaei, S ; Sharif University of Technology
    Springer  2021
    Abstract
    A state-of-the-art algorithm for perspective projection reconstruction of non-rigid surfaces from single-view and realistic videos is proposed. It overcomes the limitations arising from the usage of orthographic camera model and also the complexity and non-linearity issues of perspective projection equation. Unlike traditional non-rigid structure-from-motion (NRSfM) methods, which have been studied only on synthetic datasets and controlled lab environments that require some prior constraints (such as manually segmented objects, limited rotations and occlusions, and full-length trajectories); the proposed method can be used in realistic video sequences. In addition, contrary to previous... 

    ST-CAC: a low-cost crosstalk avoidance coding mechanism based on three-valued numerical system

    , Article Journal of Supercomputing ; Volume 77, Issue 7 , 2021 , Pages 6692-6713 ; 09208542 (ISSN) Shirmohammadi, Z ; Khorami, A ; Omana, M. E ; Sharif University of Technology
    Springer  2021
    Abstract
    Appearances of specific transition patterns during data transfer in bus lines of modern high-performance computing systems, such as communicating structures of accelerators for deep convolutional neural networks, commercial Network on Chips, and memories, can lead to crosstalk faults. With the shrinkage of technology size, crosstalk faults occurrence boosts and leads to degradation of reliability and performance, as well as the increasing power consumption of lines. One effective way to alleviate crosstalk faults is to avoid the appearance of these specific transition patterns by using numerical-based crosstalk avoidance codes (CACs). However, a serious problem with numerical-based CACs is... 

    A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

    , Article Bio-Design and Manufacturing ; Volume 5, Issue 2 , 2022 , Pages 371-395 ; 20965524 (ISSN) Sarraf, M ; Rezvani Ghomi, E ; Alipour, S ; Ramakrishna, S ; Liana Sukiman, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical... 

    Friction stirwelding and friction spot stir welding processes of polymers-state of the art

    , Article Materials ; Volume 13, Issue 10 , May , 2020 Lambiase, F ; Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    In the last decade, the friction stir welding of polymers has been increasingly investigated by the means of more and more sophisticated approaches. Since the early studies, which were aimed at proving the feasibility of the process for polymers and identifying suitable processing windows, great improvements have been achieved. This owes to the increasing care of academic researchers and industrial demands. These improvements have their roots in the promising results from pioneer studies; however, they are also the fruits of the adoption of more comprehensive approaches and the multidisciplinary analyses of results. The introduction of instrumented machines has enabled the online measurement... 

    Cuckoo-PC: An evolutionary synchronization-aware placement of SDN controllers for optimizing the network performance in WSNs

    , Article Sensors (Switzerland) ; Volume 20, Issue 11 , 2020 , Pages 1-19 Tahmasebi, S ; Safi, M ; Zolfi, S ; Maghsoudi, M. R ; Faragardi, H. R ; Fotouhi, H ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Due to reliability and performance considerations, employing multiple software-defined networking (SDN) controllers is known as a promising technique in Wireless Sensor Networks (WSNs). Nevertheless, employing multiple controllers increases the inter-controller synchronization overhead. Therefore, optimal placement of SDN controllers to optimize the performance of a WSN, subject to the maximum number of controllers, determined based on the synchronization overhead, is a challenging research problem. In this paper, we first formulate this research problem as an optimization problem, then to address the optimization problem, we propose the Cuckoo Placement of Controllers (Cuckoo-PC) algorithm....