Loading...
Search for: state-space-methods
0.009 seconds
Total 41 records

    A model aided inertial navigation system for automatic landing of unmanned aerial vehicles

    , Article Navigation, Journal of the Institute of Navigation ; Volume 65, Issue 2 , June , 2018 , Pages 183-204 ; 00281522 (ISSN) Mohammadkarimi, H ; Nobahari, H ; Sharif University of Technology
    Wiley-Blackwell  2018
    Abstract
    The use of Model Aided Inertial Navigation (MAIN) during the landing of an Unmanned Aerial Vehicle (UAV) is investigated. A new MAIN algorithm is proposed, which is fast and accurate enough to be used in automatic landing. In this algorithm, the six Degree of Freedom (6DoF) model of the UAV is tightly coupled with the inertial navigation system; thus, the 6DoF model acts as an aiding system for the INS and vice versa. In the last parts of the landing phase in proximity of Earth, the proposed algorithm also estimates and removes the Ground Effect (GE) uncertainties and provides the height controller with a realistic model. An adaptive controller based on a parametric state-space model is used... 

    Fault diagnosis within multistage machining processes using linear discriminant analysis: a case study in automotive industry

    , Article Quality Technology and Quantitative Management ; Volume 14, Issue 2 , 2017 , Pages 129-141 ; 16843703 (ISSN) Bazdar, A ; Baradaran Kazemzadeh, R ; Akhavan Niaki, S. T ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Statistical process control provides useful tools to improve the quality of multistage machining processes, specifically in continuous manufacturing lines, where product characteristics are measured at the final station. In order to reduce process errors, variation source identification has been widely applied in machining processes. Although statistical estimation and pattern matching-based methods have been utilized to monitor and diagnose machining processes, most of these methods focus on stage-by-stage inspection using complex models and patterns. However, because of the existence of high rate alarms and the complexity of the machining processes, a surrogate modelling is needed to solve... 

    On an extended Kantorovich method for the mechanical behavior of functionally graded solid/annular sector plates with various boundary conditions

    , Article Acta Mechanica ; Volume 228, Issue 7 , 2017 , Pages 2655-2674 ; 00015970 (ISSN) Fallah, F ; Khakbaz, A ; Sharif University of Technology
    Springer-Verlag Wien  2017
    Abstract
    Based on the first-order shear deformation plate theory, two approaches within the extended Kantorovich method (EKM) are presented for a bending analysis of functionally graded annular sector plates with arbitrary boundary conditions subjected to both uniform and non-uniform loadings. In the first approach, EKM is applied to the functional of the problem, while in the second one EKM is applied to the weighted integral form of the governing differential equations of the problem as presented by Kerr. In both approaches, the system of ordinary differential equations with variable coefficients in r direction and the set of ordinary differential equations with constant coefficients in θ direction... 

    Partial order reduction for timed actors

    , Article 13th International Conference on Verified Software: Theories, Tools, and Experiments, VSTTE 2021 and 14th International Workshop on Numerical Software Verification, NSV 2021, 18 October 2021 through 19 October 2021 ; Volume 13124 LNCS , 2022 , Pages 43-60 ; 03029743 (ISSN); 9783030955601 (ISBN) Bagheri, M ; Sirjani, M ; Khamespanah, E ; Hojjat, H ; Movaghar, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    We propose a compositional approach for the Partial Order Reduction (POR) in the state space generation of asynchronous timed actors. We define the concept of independent actors as the actors that do not send messages to a common actor. The approach avoids exploring unnecessary interleaving of executions of independent actors. It performs on a component-based model where actors from different components, except for the actors on borders, are independent. To alleviate the effect of the cross-border messages, we enforce a delay condition, ensuring that an actor introduces a delay in its execution before sending a message across the border of its component. Within each time unit, our technique... 

    Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations

    , Article Meccanica ; Volume 47, Issue 6 , December , 2012 , Pages 1401-1423 ; 00256455 (ISSN) Yas, M. H ; Jodaei, A ; Irandoust, S ; Aghdam, M. N ; Sharif University of Technology
    Springer  2012
    Abstract
    Three-dimensional free vibration analysis of functionally graded piezoelectric (FGPM) annular plates resting on Pasternak foundations with different boundary conditions is presented. The material properties are assumed to have an exponent-law variation along the thickness. A semi-Analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the influences of the Winkler and shearing layer elastic coefficients of the foundations on the non-dimensional natural frequencies of functionally graded piezoelectric annular plates. The analytical solution in the thickness direction can be... 

    Multivariable control of an industrial boiler-turbine unit with nonlinear model: A comparison between gain scheduling and feedback linearization approaches

    , Article Scientia Iranica ; Volume 20, Issue 5 , 2013 , Pages 1485-1498 ; 10263098 (ISSN) Moradi, H ; Alasty, A ; Saffar Avval, M ; Bakhtiari Nejad, F ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Due to demands for the economical operations of power plants and environmental awareness, performance control of a boiler-turbine unit is of great importance. In this paper, a nonlinear Multi Input-Multi Output model (MIMO) of a utility boilerturbine unit is considered. Drum pressure, generator electric output and drum water level (as the output variables) are controlled by manipulation of valves position for fuel, feedwater and steam flows. After state space representation of the problem, two controllers, based on gain scheduling and feedback linearization, are designed. Tracking performance of the system is investigated and discussed for three cases of 'near', 'far' and 'so far' setpoints.... 

    LMI-based sufficient conditions for robust stability and stabilization of LTI-fractional-order systems subjected to interval and polytopic uncertainties

    , Article Transactions of the Institute of Measurement and Control ; Volume 37, Issue 10 , 2015 , Pages 1207-1216 ; 01423312 (ISSN) Adelipour, S ; Abooee, A ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this paper, by introducing a new general state-space form for uncertain linear time-invariant fractional-order systems subjected to interval and polytopic uncertainties, two problems including robust stability analysis and robust stabilization of the presented systems are investigated. Subsequently, two sufficient conditions in terms of several linear matrix inequalities for the problems mentioned are concluded as two separate theorems. It is assumed that the fractional order α is a known constant belonging to 0 < α < 1. Simulation results of two different numerical examples demonstrate that the provided sufficient conditions are applicable and effective for tackling robust stability and... 

    Free vibration of bi-material cylindrical shells

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 230, Issue 15 , 2016 , Pages 2637-2649 ; 09544062 (ISSN) Sarkheil, S ; Foumani, M. S ; Navazi, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    Based on the Sanders thin shell theory, this paper presents an exact solution for the vibration of circular cylindrical shell made of two different materials. The shell is sub-divided into two segments and the state-space technique is employed to derive the homogenous differential equations. Then continuity conditions are applied where the material of the cylindrical shell changes. Shells with various combinations of end boundary conditions are analyzed by the proposed method. Finally, solving different examples, the effect of geometric parameters as well as BCs on the vibration of the bi-material shell is studied  

    Conditions on decomposing linear systems with more than one matrix to block triangular or diagonal form

    , Article IEEE Transactions on Automatic Control ; Volume 60, Issue 1 , May , 2015 , Pages 233-239 ; 00189286 (ISSN) Mesbahi, A ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results  

    Synthesis of sparse dynamic structures via semidefinite programming

    , Article IEEE Transactions on Control Systems Technology ; Volume 24, Issue 3 , 2016 , Pages 1028-1035 ; 10636536 (ISSN) Babazadeh, M ; Nobakhti, A
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This brief presents a systematic approach for the design of sparse dynamic output feedback control structures. A supplementary complexity cost function term is used to promote sparsity in the structure while optimizing an H2 performance cost simultaneously. Optimization problems in which a combinatorial sparsity measure is combined with a nonlinear performance cost function are NP-hard. NP-hard problems do not have tractable solutions, requiring either a numerical solution or a relaxation into a solvable form. Relaxations will introduce conservatism, but at the same time retain stability and performance guarantees. In this brief, a new relaxation methodology is proposed, which allows the... 

    Decentralized model predictive voltage control of islanded DC microgrids

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Abbasi, M ; Mahdian Dehkordi, N ; Sadati, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper proposes a novel decentralized control approach for islanded direct-current (DC) microgrids (MGs) based on model predictive control (MPC) to regulate the distributed generation unit (DGU) output voltages, i.e. the voltages of the point of common coupling (PCC). A local controller is designed for each DGU, in the presence of uncertainties, disturbances, and unmodeled dynamics. First, a discrete-time state-space model of an MG is derived. Afterward, an MPC algorithm is designed to perform the PCC voltage control. The proposed MPC scheme ensures that the PCC voltages remain within an acceptable range. Several simulation studies have been conducted to illustrate the effectiveness of... 

    Particle filtering-based low-elevation target tracking with multipath interference over the ocean surface

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 56, Issue 4 , 2020 , Pages 3044-3054 Shi, X ; Taheri, A ; Cecen, T ; Celik, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    As radar signals propagate above the ocean surface to determine the trajectory of a target, the signals that are reflected directly from the target arrive at the receiver along with indirect signals reflected from the ocean surface. These unwanted signals must be properly filtered; otherwise, their interference may mislead the signal receiver and significantly degrade the tracking performance of the radar. To this end, we propose a low-elevation target tracking mechanism considering the specular and diffuse reflection effects of multipath propagation over the ocean surface simultaneously. The proposed mechanism consists of a state-space model and a particle filtering algorithm and promises... 

    A unified optimization-based framework to adjust consensus convergence rate and optimize the network topology in uncertain multi-agent systems

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 8, Issue 9 , 2021 , Pages 1539-1548 ; 23299266 (ISSN) Sarafraz, M. S ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper deals with the consensus problem in an uncertain multi-agent system whose agents communicate with each other through a weighted undirected (primary) graph. The considered multi-agent system is described by an uncertain state-space model in which the involved matrices belong to some matrix boxes. As the main contribution of the paper, a unified optimization-based framework is proposed for simultaneously reducing the weights of the edges of the primary communication graph (optimizing the network topology) and synthesizing a controller such that the consensus in the considered uncertain multi-agent system is ensured with an adjustable convergence rate. Considering the NP-hardness... 

    Non-Minimality of the realizations and possessing state matrices with integer elements in linear discrete-time controllers

    , Article IEEE Transactions on Automatic Control ; 2022 , Pages 1-6 ; 00189286 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    It is known that discrete-time controllers, whose state matrices have no non-integer element, are beneficial in homomorphic based encrypted control systems. Nevertheless, it has been recently shown that possessing state matrices with integer elements usually yields unstable discrete-time controllers. In this note, we investigate the problem from a non-minimality perspective. It is shown that non-minimal realizations, in comparison to minimal ones, can theoretically provide a wider framework to obtain controllers having state matrices with integer elements. However, in the case of dealing with BIBO stable controllers, this framework cannot preserve internal stability. But, benefiting from the... 

    Resilient transactive control for systems with high wind penetration based on cloud computing

    , Article IEEE Transactions on Industrial Informatics ; Volume 14, Issue 3 , 2018 , Pages 1286-1296 ; 15513203 (ISSN) Rayati, M ; Ranjbar, A. M ; Sharif University of Technology
    IEEE Computer Society  2018
    Abstract
    One of the main shortcomings, caused by high penetration of wind power, is intermittency of generation. For integrating high penetration of wind power, the frequency regulation and the transactive control systems are modified to be sufficiently resilient against fluctuations of wind power and malicious cyber threats. Here, a hierarchical state-space model is presented for the frequency regulation and the transactive control systems in a smart grid environment. To achieve a resilient control, a framework based on cloud computing is proposed for the communication network. Benefits and challenges of the cloud-based framework are also described in this paper. To optimize the operation of the... 

    Efficient evaluation of CSAN models by state space analysis methods

    , Article 2006 International Conference on Software Engineering Advances, ICSEA'06, Tahiti, 29 October 2006 through 3 November 2006 ; 2006 , Pages 57-62 ; 0769527035 (ISBN); 9780769527031 (ISBN) Abdollahi Azgomi, M ; Movaghar, A ; Sharif University of Technology
    IEEE Computer Society  2006
    Abstract
    We have recently introduced a high-level extension for stochastic activity networks (SANs) called coloured stochastic activity networks (CSANs). CSANs have several distinguishing properties, which make them quite appropriate for modeling and evaluation of software performance and dependability. CSANs have introduced a construct called coloured place for data manipulation. A coloured place holds a list of tokens of a userdefined token type. CSAN models can be evaluated by state space analysis techniques or discrete-event simulation. However, their state spaces will become very large, even for a small CSAN model. For efficient evaluation of these models by state space analysis methods, we will... 

    Dual Lagrangian modeling and Lyapunov-based control of three-level three-phase NPC voltage-source rectifier

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012, Venice, 18 May 2012 through 25 May 2012 ; 2012 , Pages 737-743 ; 9781457718281 (ISBN) Mehrasa, M ; Ahmadigorji, M ; Abedi, A ; Sharif University of Technology
    IEEE  2012
    Abstract
    The load current of three level/phase neutral point clamped rectifier could be expressed in two forms: the load current involving the current of capacitor C1, and the load current involving the current of capacitor C2. Using the Euler-Lagrange model based on the superposition law and the obtained load current, a new dual Lagrangian model of the rectifier is founded in this paper and then the two obtained nonlinear state space models are developed in dq0 reference frame. According to the new model, two positive definite Lyapunov function candidates are defined and a Lyapunov-based control is applied to the rectifier. Each of the function is utilized to control its corresponding output voltage... 

    A double-max MEWMA scheme for simultaneous monitoring and fault isolation of multivariate multistage auto-correlated processes based on novel reduced-dimension statistics

    , Article Journal of Process Control ; Volume 29 , May , 2015 , Pages 11-22 ; 09591524 (ISSN) Pirhooshyaran, M ; Akhavan Niaki, S. T ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this article, a double-max multivariate exponentially weighted moving average (DM-MEWMA) chart is proposed to jointly monitor the parameters of a multivariate multistage auto-correlated (MMAP) process. While the process is assumed to work in a linear state-space form, two modified statistics are combined into a novel statistic to monitor the mean vector and the covariance matrix of the MMAP simultaneously. Besides, prior knowledge of variation propagation is used so that the chart has both a fault identification power and capability of working with the sample size of one. A statistical test shows that the two proposed statistics are independent of the process dimension. Monte Carlo... 

    Model identification of a Marine robot in presence of IMU-DVL misalignment using TUKF

    , Article Ocean Engineering ; Volume 206 , 2020 Ghanipoor, F ; Alasty, A ; Salarieh, H ; Hashemi, M ; Shahbazi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In today's world, control and navigation of autonomous underwater vehicles (AUVs) are quite challenging issues. In these fields, obtaining an identified dynamic model of AUV is a vital part. In this paper, a method for parameter estimation of an AUV planar model is proposed, which uses augmented state space technique and Square Root Transformed Unscented Kalman Filter (SR-TUKF) as an estimator. Furthermore, by modeling, misalignment between Inertial Measurement Unit (IMU) and Doppler Velocity Log (DVL) is estimated, simultaneously. Parameter identification is conducted using data of an AUV, equipped with Gyroscope, DVL and Encoder for measuring control inputs, in a planar maneuver. According... 

    Analysis of frequency-dependent network equivalents in dynamic harmonic domain

    , Article Electric Power Systems Research ; Volume 193 , 2021 ; 03787796 (ISSN) Karami, E ; Hajipour, E ; Vakilian, M ; Rouzbehi, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Rational function-based models have proved to be very efficient for accurate frequency-dependent modeling of power system components. These models are able to characterize the components terminal behaviours (analysing the admittance matrix) for nodal analysis. This provides a fast convergence and inherent stability to the solution routine of the model. This work presents a general framework for interfacing the dynamic phasor method to the rational models. That would be promising for the electromagnetic transient analysis (under harmonic distortion), in the frequency domain. Therefore, Y-element rational pole-residue models (employing the vector fitting method) are developed. Moreover, the...