Loading...
Search for: statistical-simulation
0.006 seconds

    Development& Implementation of an Algorithm to Generate Correlated Uniformly Distributed Tri-Dimensional Vectors

    , M.Sc. Thesis Sharif University of Technology Saberian, Fatemeh (Author) ; Akhavan Niaki, Taghi (Supervisor)
    Abstract
    Nowadays, simulation science supports a wide range of researches. This science is in a constant improvement process. Simulation is a process to fulfill the real world problems by means of experiments which resemble to the real world situation so much. One of the preconditions in statistical simulation is to produce the random number and variables based on the presumed attributes and parameters. In this research, at first, a simple and fast responding algorithm to generate correlated uniformly distributed tri-dimensional vectors is proposed. In this algorithm by producing three groups of random numbers, we can produce tri-dimensional vectors of correlated uniformly distributed based on... 

    Elimination of the effect of bottom-plate capacitors in C-2C DAC using a layout technique

    , Article Microelectronics Journal ; Volume 46, Issue 12 , 2015 , Pages 1275-1282 ; 00262692 (ISSN) Khorami, A ; Sharifkhani, M ; Sharif University of Technology
    Abstract
    An efficient layout technique is proposed to eliminate the effect of the bottom-plate capacitors in a C-2C Digital to Analog Converter (DAC). Using this technique, the bottom-plate capacitors of 2C capacitors in the C-2C structure are placed in parallel with 1C capacitors. Then, the effect of the bottom plate capacitors is nulled by modifying the size of the main 1C capacitors. Hence, avoiding the complexity of calibration, this technique can preclude the effect of the bottom-plate to ground capacitance. Statistical simulations prove that the proposed technique is robust to non-ideal effects such as mismatch or parasitic capacitors. A 10-bit C-2C DAC is modeled in COMSOL Multiphysics using... 

    Top-down design of a low-power multi-channel 2.5-Gbit/s/channel gated oscillator clock-recovery circuit

    , Article Design, Automation and Test in Europe, DATE '05, Munich, 7 March 2005 through 11 March 2005 ; Volume I , 2005 , Pages 258-263 ; 15301591 (ISSN); 0769522882 (ISBN); 9780769522883 (ISBN) Muller, P ; Tajalli, A ; Atarodi, M ; Leblebici, Y ; Sharif University of Technology
    2005
    Abstract
    We present a complete top-down design of a low-power multi-channel clock recovery circuit based on gated current-controlled oscillators. The flow includes several tools and methods used to specify block constraints, to design and verify the topology down to the transistor level, as well as to achieve a power consumption as low as 5mW/Gbit/s. Statistical simulation is used to estimate the achievable bit error rate in presence of phase and frequency errors and to prove the feasibility of the concept. VHDL modeling provides extensive verification of the topology. Thermal noise modeling based on well-known concepts delivers design parameters for the device sizing and biasing. We present two...