Loading...
Search for: steady-state-equilibrium
0.007 seconds

    Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes

    , Article Energy ; Volume 145 , 2018 , Pages 261-275 ; 03605442 (ISSN) Ebrahimi, A ; Sekandari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, the aeroelastic analysis of a large scale wind turbine rotor is performed with the aim of studying transient performance of turbine in extreme wind conditions, such as wind gusts and rapid yaw changes. The effect of the presence and/or lack of blade pitch control system on output power, rotor thrust, and blade deformation in sudden change of wind speed are investigated. The NREL 5 MW offshore wind turbine is used as the baseline case. In this regard, the modal approach is implemented for modeling the flexible blade structure with tension, bending and torsion degrees of freedom. The unsteady vortex lattice method is employed to obtain the aerodynamic loads. Moreover, the... 

    The effect of local thermal non-equilibrium on conduction in porous channels with a uniform heat source

    , Article Transport in Porous Media ; Volume 69, Issue 2 , 2007 , Pages 281-288 ; 01693913 (ISSN) Nouri Borujerdi, A ; Noghrehabadi, A. R ; Rees, D. A. S ; Sharif University of Technology
    2007
    Abstract
    We examine the effect of local thermal non-equilibrium on the steady state heat conduction in a porous layer in the presence of internal heat generation. A uniform source of heat is present in either the fluid or the solid phase. A two-temperature model is assumed and analytical solutions are presented for the resulting steady-state temperature profiles in a uniform porous slab. Attention is then focussed on deriving simple conditions which guarantee local thermal equilibrium. © Springer Science+Business Media, Inc. 2006  

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a... 

    Steady-state thermal and mechanical stresses in two-dimensional functionally graded piezoelectric materials (2D-FGPMs) for a hollow infinite cylinder

    , Article Scientia Iranica ; Volume 26, Issue 1B , 2019 , Pages 428-444 ; 10263098 (ISSN) Meshkini, M ; Selk Ghafari, A ; Firoozbakhsh, K ; Jabbari, M ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this paper, the general analysis of two-dimensional steady-state thermal and mechanical stresses for a hollow thick infinite cylinder made of Functionally Graded Piezoelectric Materials (2D-FGPMs) is performed and developed. The general form of thermal, mechanical, and electrical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and the non-homogenous system of partial differential Navier equations, using the complex Fourier series and the power law functions method. The material properties are assumed dependent on the radial and circumferential variables and are expressed as power law functions along the... 

    Steady-state thermal and mechanical stresses in two-dimensional functionally graded piezoelectric materials (2D-FGPMs) for a hollow infinite cylinder

    , Article Scientia Iranica ; Volume 26, Issue 1B , 2019 , Pages 428-444 ; 10263098 (ISSN) Meshkini, M ; Selk Ghafari, A ; Firoozbakhsh, K ; Jabbari, M ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this paper, the general analysis of two-dimensional steady-state thermal and mechanical stresses for a hollow thick infinite cylinder made of Functionally Graded Piezoelectric Materials (2D-FGPMs) is performed and developed. The general form of thermal, mechanical, and electrical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and the non-homogenous system of partial differential Navier equations, using the complex Fourier series and the power law functions method. The material properties are assumed dependent on the radial and circumferential variables and are expressed as power law functions along the... 

    Simultaneous determination of gas–water relative permeability and capillary pressure from steady-state corefloods

    , Article Journal of Hydrology ; Volume 598 , 2021 ; 00221694 (ISSN) Borazjani, S ; Hemmati, N ; Behr, A ; Genolet, L ; Mahani, H ; Zeinijahromi, A ; Bedrikovetsky, P ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    For traditional calculations of relative phase permeability (Kr) from coreflood Steady-State Test (SST), the capillary pressure (Pc) is required. Usually, Pc is determined from a separate test, using a centrifuge or porous-plate methods. However, during SSTs, water cut and pressure drop are measured during the transition period between two sequential fractional-flow steps. We developed a novel method for simultaneous determination of Kr and Pc from SST by using both steady-state and transient data. In the proposed method, the transition data on the pressure drop across the core are used instead of the traditionally utilised Pc-curve. The main idea is that the stabilisation period during each... 

    Simulation and experimental validation of flow-current characteristic of a sample hydraulic servo valve

    , Article Scientia Iranica ; Volume 17, Issue 5 B , 2010 , Pages 327-336 ; 10263098 (ISSN) Sadooghi, M. S ; Seifi, R ; Saadat Foumani, M ; Sharif University of Technology
    2010
    Abstract
    This paper presents a novel model to simulate the flow-current characteristic curve of an electro-hydraulic servo valve in steady state condition. This characteristic curve has three major zones: dead zone, linear zone and saturation zone. By using the presented approach, we can simulate the behavior of all types of valves including under lapped, critical center (zero lapped) and over lapped valves. A hydraulic tester has been designed and constructed for validation of the results. It can test the performance of flow-current and some other properties of the valve. Comparison of experimental and simulated curves describes that the model has an acceptable accuracy in determining the four... 

    Probabilistic analysis of long-term climate drought using steady-state markov chain approach

    , Article Water Resources Management ; Volume 34, Issue 15 , 2020 , Pages 4703-4724 Azimi, S ; Hassannayebi, E ; Boroun, M ; Tahmoures, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    This study presents a steady-state Markov chain model to predict the long-term probability of drought conditions. The research aims to propose a rigorous framework for statistical analysis of drought characteristics and its trends over time for a large area of aquifers and plains in Iran. For this purpose, two meteorological indicators called the Standardized Precipitation Index (SPI), and the Groundwater Resource Index (GRI) are examined. The groundwater drought study includes more than 26,000 wells in about 600 meteorological stations over 20 years being surveyed daily. This study discusses the spatial interpolation of drought steady-state probabilities based on recorded SPI and GRI data... 

    Numerical solution of homogeneous double pipe heat exchanger: Dynamic modeling

    , Article Scientia Iranica ; Volume 21, Issue 2 , 2014 , pp. 449-455 ; ISSN: 10263098 AliHosseinpour, H ; Kazemi, Y ; Fattahi, M ; Sharif University of Technology
    Abstract
    Dynamic modeling of a double-pipe heat exchanger is the subject of the current study. The basis of this study is the same velocity of vapor and liquid phases or, in other words, homogeneous phase, in the annulus part of the exchanger. The model can predict the temperature and vapor quality along the axial pipe from the pipe inlet up to a distance where steady state conditions are achieved. The simulation is conducted for two modes of co- and counter-flow in a one dimensional transient system. The physical properties of water are estimated from empirical correlation and a saturated vapor table with cubic spline interpolation. The exchanger model, which is a set of Ordinary Differential... 

    Numerical simulation of buoyancy affected turbulent air flow in a room

    , Article Scientia Iranica ; Volume 15, Issue 3 , 2008 , Pages 398-404 ; 10263098 (ISSN) Nouri Borujerdi, A ; Fathi Gishnegani, A ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    In this paper, a three-dimensional steady state incompressible turbulent air flow is considered in a large single room. The buoyancy affected turbulent air flow is numerically simulated by solving governing equations. The turbulence modeling includes both κ - ε and zero-equation models and their results are compared to the experimental data. The paper reviews several aspects, such as displacement of radiator system performance, temperature and flow field distribution and comfort conditions. The results show that the best temperature distribution and comfort condition are obtained when the radiator is installed under the window and its height is equal to or greater than that of the window. ©... 

    Modeling of twin-entry radial turbine performance characteristics based on experimental investigation under full and partial admission conditions

    , Article Scientia Iranica ; Volume 16, Issue 4 B , 2009 , Pages 281-290 ; 10263098 (ISSN) Hajilouy, A ; Rad, M ; Shahhosseini, M. R ; Sharif University of Technology
    2009
    Abstract
    In this paper, the performance of a turbocharger twin-entry radial inflow turbine is investigated analytically and experimentally under steady state, full and partial admission conditions. In this modeling, the mass flow rate, pressure ratio and efficiency of the turbine are assumed unknown. The turbine geometry and the inlet total pressure and temperature are known, hence, the turbine performance characteristics can be obtained. In the turbocharger laboratory, performance characteristics of the turbine are determined, measuring the main parameters for various operating conditions. Comparing the model and experimental results shows good agreement. Also, considering the effect of test... 

    Bench-scaled nano-Fe 0 permeable reactive barrier for nitrate removal

    , Article Ground Water Monitoring and Remediation ; Volume 31, Issue 4 , 2011 , Pages 82-94 ; 10693629 (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Kholghi, M ; Sharif University of Technology
    Abstract
    There are many fundamental problems with the injection of nano-zero-valent iron (NZVI) particles to create permeable reactive barrier (PRB) treatment zone. Among them the loss of medium porosity or pore blocking over time can be considered which leads to reduction of permeability and bypass of the flow and contaminant plume up-gradient of the PRB. Present study provides a solution for such problems by confining the target zone for injection to the gate in a funnel-and-gate configuration. A laboratory-scale experimental setup is used in this work. In the designed PRB gate, no additional material from porous media exists. NZVI (d 50 = 52 ± 5 nm) particles are synthesized in water mixed with... 

    A numerical study of the effects of blood rheology and vessel deformability on the hemodynamics of carotid bifurcation

    , Article Scientia Iranica ; Volume 19, Issue 1 , February , 2012 , Pages 119-125 ; 10263098 (ISSN) Toloui, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    2012
    Abstract
    Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. In the present study, both rigid-wall and deformable-wall models are developed in a 3D numerical simulation to assess the effectiveness of arterial rigidity on worsening hemodynamics, especially WSS. Two different rheological models (Newtonian and CarreauYasuda) have been employed to evaluate the influence of blood, non-Newtonian properties, as well. The importance of vessel wall deformability was compared with the rheological model of blood.... 

    A new algorithm to solve sinusoidal steady-state Maxwell's equations on unstructured grids

    , Article Scientia Iranica ; Volume 25, Issue 3B , 2018 , Pages 1296-1302 ; 10263098 (ISSN) Azimi, S ; Saidi, M. S ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    A new approach for attaining numerical solution to sinusoidal steady-state Maxwell's equations is developed. This approach is based on Yee's method, and can be applied on unstructured grids. A problem is solved by the method and the results show good agreement with the available analytical solution. This method can be improved to be applicable for general unsteady problems. © 2018 Sharif University of Technology. All rights reserved