Loading...
Search for: steam
0.013 seconds
Total 138 records

    Nonlinear dynamics and control of bifurcation to regulate the performance of a boiler-turbine unit

    , Article Energy Conversion and Management ; Vol. 68 , 2013 , pp. 105-113 ; ISSN: 01968904 Moradi, H ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    The economical operations of power plants and environmental awareness are the major factors affecting the importance of control in boiler-turbine units. In this paper, a multivariable nonlinear model of boiler-turbine unit is considered. Drum pressure, electric output and water level of drum (as output variables) are adjusted at desired values by manipulation of valve positions for fuel, steam and feed-water flow rates (as input variables). Nonlinear dynamics of the unit is investigated through the concepts of bifurcation and limit cycles behaviour. In the presence of harmonic disturbances, some coefficients of the dynamic model, fuel and steam flow rates play as the bifurcation parameters.... 

    Using sliding mode control to adjust drum level of a boiler unit with time varying parameters

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis ; Vol. 5 , 2010 , pp. 29-33 ; ISBN: 9780791849194 Moradi, H ; Bakhtiari-Nejad, F ; Saffar-Avval, M ; Alasty, A ; Sharif University of Technology
    Abstract
    Stable control of water level of drum is of great importance for economic operation of power plant steam generator systems. In this paper, a linear model of the boiler unit with time varying parameters is used for simulation. Two transfer functions between drum water level (output variable) and feed-water and steam mass rates (input variables) are considered. Variation of model parameters may be arisen from disturbances affecting water level of drum, model uncertainties and parameter mismatch due to the variant operating conditions. To achieve a perfect tracking of the desired drum water level, two sliding mode controllers are designed separately. Results show that the designed controllers... 

    A study of enhanced heavy oil recovery by two well cyclical steam assisted gravity drainage (TWC-SAGD) in conventional and fractured reservoirs

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 10 , Dec , 2014 , pp. 1065-1076 ; ISSN: 15567036 Ghoodjani, E ; Bolouri, S. H ; Sharif University of Technology
    Abstract
    Steam-assisted gravity drainage is one of the most promising strategies to develop huge heavy oil and bitumen accumulations. Like the other thermal processes, this method aims at reducing oil viscosity by increasing the temperature. But in an economical point of view, it requires a great volume of steam for injection. Moreover, early breakthrough of steam and high steam-oil ratio makes it uneconomical, especially in long production time. In this study, a new method, two wells cyclical steam-assisted gravity drainage is compared with a conventional steam-assisted gravity drainage process. Well configuration in two wells cyclical steam-assisted gravity drainage is the same as the... 

    Catalyst deactivation in industrial combined steam and dry reforming of natural gas

    , Article Fuel Processing Technology ; Vol. 120 , 2014 , pp. 96-105 ; ISSN: 03783820 Banisharifdehkordi, F ; Baghalha, M ; Sharif University of Technology
    Abstract
    The catalyst's performance and deactivation in a Midrex® industrial fixed bed reactor were investigated for the combined steam and dry reforming of natural gas using a one-dimensional heterogeneous model. The results demonstrate that there is a strong tendency for the catalyst's deactivation by carbon formation originating from methane decomposition. However, kinetic modelling of the combined reforming process shows that only a fraction of the catalyst in the industrial reactor is required for the reactions to reach an equilibrium state in the reformer. Hence, as the catalyst is deactivated at the reactor entrance area, the reaction zone gradually moves forward and still allows for... 

    Effect of decision variables in the steam section for the exergoeconomic analysis of TCCGT power plant: A case study

    , Article Energy and Environment ; Vol. 25, issue. 8 , 2014 , p. 1381-1404 Abdalisousan, A ; Fani, M ; Farhanieh, B ; Abbaspour, M ; Sharif University of Technology
    Abstract
    In advanced combined-cycle power plants, significant improvements in the thermodynamic performance are mainly achieved by the development of more efficient gas-turbine systems. This paper evaluates the effect of selected decision variables in the steam system for optimization of Thermal Combined Cycle Gas Turbine (TCCGT) power plant using an iterative exergoeconomic. The design variables were the thermodynamic parameters that establish the configuration both of the steam and gas systems. The design data of an existing plant (Damavand power plant in Tehran-Iran) is used. Two different objective functions are proposed: one minimizes the total cost of production per unit of output, and the... 

    Application of fast-SAGD in naturally fractured heavy oil reservoirs: A case study

    , Article SPE Middle East Oil and Gas Show and Conference, MEOS, Proceedings, Manama ; Volume 3 , March , 2013 , Pages 1946-1953 ; 9781627482851 (ISBN) Hemmati Sarapardeh, A ; Hashemi Kiasari, H ; Alizadeh, N ; Mighani, S ; Kamari, A ; Baker Hughes ; Sharif University of Technology
    2013
    Abstract
    Steam injection process has been considered for a long time as an effective method to exploit heavy oil resources. Over the last decades, Steam Assisted Gravity Drainage (SAGD) has been proved as one of the best steam injection methods for recovery of unconventional oil resources. Recently, Fast-SAGD, a modification of the SAGD process, makes use of additional single horizontal wells alongside the SAGD well pair to expand the steam chamber laterally. This method uses fewer wells and reduces the operational cost compared to a SAGD operation requiring paired parallel wells one above the other. The efficiency of this new method in naturally fractured reservoir is not well understood.... 

    Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants

    , Article Energy Policy ; Volume 60 , 2013 , Pages 200-207 ; 03014215 (ISSN) Shahsavari Alavijeh, H ; Kiyoumarsioskouei, A ; Asheri, M. H ; Naemi, S ; Shahsavari Alavije, H ; Basirat Tabrizi, H ; Sharif University of Technology
    2013
    Abstract
    This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are... 

    Nonlinear dynamics and control of bifurcation to regulate the performance of a boiler-turbine unit

    , Article Energy Conversion and Management ; Volume 68 , 2013 , Pages 105-113 ; 01968904 (ISSN) Moradi, H ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    2013
    Abstract
    The economical operations of power plants and environmental awareness are the major factors affecting the importance of control in boiler-turbine units. In this paper, a multivariable nonlinear model of boiler-turbine unit is considered. Drum pressure, electric output and water level of drum (as output variables) are adjusted at desired values by manipulation of valve positions for fuel, steam and feed-water flow rates (as input variables). Nonlinear dynamics of the unit is investigated through the concepts of bifurcation and limit cycles behaviour. In the presence of harmonic disturbances, some coefficients of the dynamic model, fuel and steam flow rates play as the bifurcation parameters.... 

    Thermoeconomic approach for optimal design of gas turbine heat recovery steam generator

    , Article Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013 ; July , 2013 Hanafizadeh, P ; Parhizgar, T ; Ghorbanian, K ; Sharif University of Technology
    China International Conference Center for Science and Technology  2013
    Abstract
    In the present study a comprehensive thermoeconomic modelling of a heat recovery steam generator (HRSG) for a typical 4MW class gas turbine is performed. Usually, the thermoeconomic analyses involve a thermodynamic model of the HRSG and an economic model dedicated to assess the cost. In this study, different configurations of single and dual pressure level HRSGs are optimized and afterward compared to find the economical design. For these configurations thermodynamic model calculates the performance and the energy balance of systems at the optimal operating conditions which are derived from optimization model, and economic model estimates total cost per unit of produced energy. Finally,... 

    The effect of geometrical properties of reservoir shale barriers on the performance of Steam-assisted Gravity Drainage (SAGD)

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 34, Issue 23 , 2012 , Pages 2178-2191 ; 15567036 (ISSN) Fatemi, S. M ; Sharif University of Technology
    Abstract
    Many bitumen reservoirs contain shale layers of varying thickness, lateral extent, and frequency. These shale layers, depending on their size, vertical and horizontal locations, and continuity throughout the reservoir, may act as a flow barrier and severely reduce vertical permeability of the pay zone and slow down the steam-assisted gravity drainage steam chamber development. Therefore, to improve productivity in these reservoirs, understanding of the effects of reservoir heterogeneities has become necessary. This work presents numerical investigation of the effects of shale barriers on steam-assisted gravity drainage performance when applied to produce mobile heavy oil. The most concern of... 

    Exergy, economic, and environmental analysis of a PEM fuel cell power system to meet electrical and thermal energy needs of residential buildings

    , Article Journal of Fuel Cell Science and Technology ; Volume 9, Issue 5 , 2012 ; 1550624X (ISSN) Ashari, G. R ; Ehyaei, M. A ; Mozafari, A ; Atabi, F ; Hajidavalloo, E ; Shalbaf, S ; Sharif University of Technology
    ASME  2012
    Abstract
    In this paper, a Polymer Electrolyte Membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger, and water heater has been considered. A PEM fuel cell system is designed to meet the electrical, domestic hot water, heating, and cooling loads of a residential building located in Tehran. Operating conditions of the system with consideration of the electricity cost has been studied. The cost includes social cost of the environmental pollutants (e.g. CO 2, CO and NO). The results show that the maximum energy needs of the building can be met by 12 fuel cell stacks with nominal capacity of 8.5 kW. Annual average electricity cost of thissystem is equal to 0.39 US$/kWh and... 

    Comparing the performance and recovery mechanisms for steam flooding in heavy and light oil reservoirs

    , Article Society of Petroleum Engineers- SPE Heavy Oil Conference ; Volume 1 , 2012 , Pages 28-36 ; 9781622761111 (ISBN) Bagheripour Haghighi, M ; Ayatollahi, S ; Shabaninejad, M ; Sharif University of Technology
    SPE  2012
    Abstract
    The concern over fossil energy shortage for the next decade leads to the extensive research activities in the area of enhanced oil recovery. Steam injection as one of well known EOR process has been used for about five decades to improve the oil production rate and recovery efficiency. Steam flooding is applied to heavy and extra-heavy oil reservoirs; however it could be used in light oil reservoirs in which water injection do not work effectively. Regardless of different performances, this method is an efficient EOR process for both heavy and light oil reservoirs. In this work, two separate numerical models were prepared to investigate steam flooding performance for the recovery of light... 

    Integration of an absorption chiller in a total CHP site for utilizing its cooling production potential based on R-curve concept

    , Article International Journal of Refrigeration ; Volume 35, Issue 5 , 2012 , Pages 1384-1392 ; 01407007 (ISSN) Ghaebi, H ; Karimkashi, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Total site integration offers energy conservation opportunities across different individual processes. It also helps for design as well as optimization of the central utility system. It gives massive energy-saving opportunities. The large industrial CHP sites generate heat and power simultaneously. These sites have different steam levels at different pressures which are used for power generation via steam turbines and also directly for satisfying process heat demand. There are many sites requiring cooling demand in hot seasons. In this article, integration of a LiBr/water absorption chiller in a CHP site has been investigated until its cooling demand is satisfied. Low pressure steam at 3 bar... 

    Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm

    , Article Applied Thermal Engineering ; Volume 36, Issue 1 , 2012 , Pages 113-125 ; 13594311 (ISSN) Ghaebi, H ; Saidi, M. H ; Ahmadi, P ; Sharif University of Technology
    2012
    Abstract
    In the present study, exergoeconomic optimization of a trigeneration system for cooling, heating and power purposes has been carried out. The system is made up of air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator and absorption chiller in order to produce cooling, heating and power. The design parameters of this study are selected as: air compressor pressure ratio, gas turbine inlet temperature, pinch point temperatures in dual pressure heat recovery steam generator, pressure of steam that enters the generator of absorption chiller, process steam pressure and evaporator of the absorption chiller chilled water outlet temperature. The economic model... 

    Investigation of the effect of geometrical properties of networked fractures on the efficiency of steam-assisted gravity drainage process

    , Article Petroleum Science and Technology ; Volume 29, Issue 16 , Jul , 2011 , Pages 1625-1636 ; 10916466 (ISSN) Fatemi, S. M ; Kharrat, R ; Vossoughi, S ; Sharif University of Technology
    2011
    Abstract
    Various fracture geometrical properties such as orientation, extension, discontinuity, dispersion, location, and networking were investigated. Results indicate improved oil recovery and sweep efficiency in the presence of vertical fractures. Longer vertical fractures seemed to have even more beneficial effects. Horizontal fractures revealed detrimental effects on oil recovery and the performance became worse for longer horizontal fractures. Discontinuous horizontal fractures caused a better performance especially when combined with continuous vertical fractures (networking). Vertical fractures helped the growth of the steam chamber in the vertical direction, which resulted in higher oil... 

    Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover

    , Article International Journal of Energy Research ; Volume 35, Issue 8 , June , 2011 , Pages 697-709 ; 0363907X (ISSN) Ghaebi, H ; Amidpour, M ; Karimkashi, S ; Rezayan, O ; Sharif University of Technology
    2011
    Abstract
    In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption,... 

    Economic feasibility of CO2 capture from oxy-fuel power plants considering enhanced oil recovery revenues

    , Article Energy Procedia, 19 September 2010 through 23 September 2010 ; Volume 4 , September , 2011 , Pages 1886-1892 ; 18766102 (ISSN) Khorshidi, Z ; Soltanieh, M ; Saboohia, Y ; Arab, M ; Sharif University of Technology
    2011
    Abstract
    Considering the dramatic increase of greenhouse gases concentration in the atmosphere, especially carbon dioxide, reduction of these gases seems necessary to combat global warming. Fossil fuel power plants are one of the main sources of CO2 emission and several methods are under development to capture CO2 from power plants. In this paper, CO2 capture from a natural gas fired steam cycle power plant using oxyfuel combustion technology is studied. Oxy-fuel combustion is an interesting option since CO2 concentration in the flue gas is highly increased. The Integrated Environmental Control Model (IECM) developed by Carnegie Mellon University (USA) is used to evaluate the effect of this capture... 

    Numerical model for estimation of corrosion location in nuclear power plant steam generators

    , Article Nuclear Engineering and Design ; Volume 241, Issue 1 , 2011 , Pages 95-100 ; 00295493 (ISSN) Tashakor, S ; Jahanfarnia, G ; Kebriaee, A ; Sharif University of Technology
    Abstract
    Deposition of dissolved impurities and corrosion in steam generators is a significant problem in the operation of nuclear power plants. Impurities and corrosion products usually accumulate in the secondary sides of steam generators (SG) and form deposits on the SG surfaces. A high level of impurity concentration close to the SG heating surface causes the corrosion process to occur with more intensity. The aim of this study is to estimate the most probable locations of impurity concentration and deposition in a SG. Equations representing the convection and diffusion in the liquid phase close to the heated surface (the viscous sub layer) are derived. Based on the mass balance of impurities in... 

    Steam reforming of methane in a tapered membrane - Assisted fluidized - Bed reactor: Modeling and simulation

    , Article International Journal of Hydrogen Energy ; Volume 36, Issue 1 , 2011 , Pages 490-504 ; 03603199 (ISSN) Dehkordi, A. M ; Savari, C ; Ghasemi, M ; Sharif University of Technology
    Abstract
    A compartment model was developed to describe the flow pattern of gas within the dense zone of a tapered membrane-assisted fluidized-bed reactor (TMAFBR), in the bubbling mode of operation for steam reforming of methane under wall heat flux. The parameters of the developed model (i.e., number of compartments for the bubble and emulsion phases) were determined using the experimental data reported elsewhere [Adris AM, Lim CJ, Grace JR. The fluidized bed membrane reactor system: a pilot scale experimental study. Chem Eng Sci 1994; 49:5833-43.] and good agreements were obtained between model predictions and corresponding experimental data. The developed model was then utilized to predict the... 

    Design and Manufacture of Steam Jet Propulsion System

    , M.Sc. Thesis Sharif University of Technology Khani Sinige, Mahmood (Author) ; Seif, Mohammad Saeed (Supervisor)
    Abstract
    Nowadays, there is a focus on developing a propulsion system with higher efficiency and performance in comparison to conventional systems. Many diverse systems have been designed for the vessel propulsion and everyday, utilizing new ideas, their performance and energy consumption are being improved. Direct use of steam energy is a noble and new idea. In this research, the steam jet propulsion system has been explained and current worldwide research on the topic has been investigated. Considering the shortage of primary data in the field and the novelty of subject, required information for the manufacturing of a sample model of this special propulsion system has been gathered and a design for...