Loading...
Search for: strain
0.011 seconds
Total 998 records

    Structural characteristics and desorption properties of nanostructured MgH2 synthesised by high energy mechanical milling [electronic resource]

    , Article Journal of Powder Metallurgy ; September 2011, Volume 54, Issue 4 , P.480-483 Simchi, H ; Kaflou, A ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    The effect of particle size, lattice strain and crystallite size on the hydrogen desorption properties of nanocrystalline magnesium hydride powder was investigated. Commercial MgH2 powder was milled in a Spex 8000M up to 16 h and its structural evolution and desorption characteristics at different time intervals were examined using various analytical techniques. At the early stage of milling, the formation of metastable γ-MgH2 phase was noticed. While the crystallite size gradually decreased to 12 nm with increasing the milling time, the accumulated lattice strain gained a maximum value of 0·9% after 4 h milling. The highest drop in the desorption temperature (∼100°C) was attained at the... 

    Strain effect on quantum conductance of graphene nanoribbons from maximally localized wannier functions

    , Article Physical Review B: Condensed Matter ; Volume 81, Issue 12, Article number 125409 , 5 March , 2010 Rasuli, R. (Reza) ; Rafii-Tabar, H ; Iraji Zad, A. (Azam) ; Sharif University of Technology
    Abstract
    Density-functional study of strain effects on the electronic band structure and transport properties of the graphene nanoribbons (GNR) is presented. We apply a uniaxial strain (ε) in the x (nearest-neighbor) and y (second-nearest-neighbor) directions, related to the deformation of zigzag- and armchair-edge GNRs (AGNR and ZGNR), respectively. We calculate the quantum conductance and band structures of the GNR using the Wannier function in a strain range from −8% to +8% (minus and plus signs show compression and tensile strain). As strain increases, depending on the AGNR family type, the electrical conductivity changes from an insulator to a conductor. This is accompanied by a variation in the... 

    Suppression of dynamic pull-in instability in electrostatically actuated strain gradient beams

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 2014 , pp. 155-160 ; ISBN: 9781479967438 Edalatzadeh, M. S ; Vatankhah, R ; Alasty, A ; Sharif University of Technology
    Abstract
    In this paper, vibration suppression of micro-or nano-scale beams subjected to nonlinear distributed electrostatic force is studied. For the sake of precision, we use the beam model derived from strain gradient elasticity theory aimed at prediction of size effect. In addition, the electrostatic force is considered with first order fringing field correction. The continuous model of the strain gradient beam is truncated by using Kantorovich method as a semi-analytical finite element method. A boundary control feedback law is proposed to suppress forced vibrations of the beam. Both measurements and actuations are taken place in the boundary to avoid spillover instabilities. Simulation results... 

    Nonlinear forced vibration of strain gradient microbeams

    , Article Applied Mathematical Modelling ; Volume 37, Issue 18-19 , 1 October , 2013 , pp. 8363-8382 ; ISSN: 0307904X Vatankhah, R ; Kahrobaiyan, M. H ; Alasty, A ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, the strain gradient theory, a non-classical continuum theory able to capture the size effect happening in micro-scale structures, is employed in order to investigate the size-dependent nonlinear forced vibration of Euler-Bernoulli microbeams. The nonlinearities are caused by mid-plane stretching and nonlinear external forces such as van-der-Waals force. The nonlinear governing equations of the microbeams are solved analytically utilizing the perturbation techniques. The primary, super-harmonic and sub-harmonic resonances of a microbeam are studied and the size-dependency of the frequency responses is assessed. The results indicate that the nonlinear forced vibration behavior... 

    Nano-resonator frequency response based on strain gradient theory

    , Article Journal of Physics D: Applied Physics ; Vol. 47, Issue. 36 , 2014 ; ISSN: 00223727 Miandoab, E. M ; Yousefi Koma, A ; Pishkenari, H. N ; Fathi, M ; Sharif University of Technology
    Abstract
    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results... 

    Dynamic analysis of electrostatically actuated nanobeam based on strain gradient theory

    , Article International Journal of Structural Stability and Dynamics ; Volume 15, Issue 4 , 2014 ; ISSN: 02194554 Miandoab, E. M ; Pishkenari, H. N ; Yousefi Koma, A ; Sharif University of Technology
    Abstract
    In this study, dynamic response of a micro- and nanobeams under electrostatic actuation is investigated using strain gradient theory. To solve the governing sixth-order partial differential equation, mode shapes and natural frequencies of beam using Euler–Bernoulli and strain gradient theories are derived and then compared with classical theory. Galerkin projection is utilized to convert the partial differential equation to ordinary differential equations representing the system mode shapes. Accuracy of proposed one degree of freedom model is verified by comparing the dynamic response of the electrostatically actuated micro-beam with analogue equation and differential quadrature methods.... 

    A strain gradient Timoshenko beam element: Application to MEMS

    , Article Acta Mechanica ; Vol. 226, issue. 2 , Jul , 2014 , pp. 505-525 ; ISSN: 00015970 Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    The classical continuum theory not only underestimates the stiffness of microscale structures such as microbeams but is also unable to capture the size dependency, a phenomenon observed in these structures. Hence, the non-classical continuum theories such as the strain gradient elasticity have been developed. In this paper, a Timoshenko beam finite element is developed based on the strain gradient theory and employed to evaluate the mechanical behavior of microbeams used in microelectromechanical systems. The new beam element is a comprehensive beam element that recovers the formulations of strain gradient Euler–Bernoulli beam element, modified couple stress (another non-classical theory)... 

    The effects of nonlinearities on the vibration of viscoelastic sandwich plates

    , Article International Journal of Non-Linear Mechanics ; Vol. 62 , 2014 , Pages 41-57 ; ISSN: 00207462 Mahmoudkhani, S ; Haddadpour, H ; Navazi, H. M ; Sharif University of Technology
    Abstract
    The nonlinear free and forced bending vibration of sandwich plates with incompressible viscoelastic core is investigated under the effects of different source of nonlinearities. For the core constrained between stiffer layers, the transverse shear strains, as well as the rotations are assumed to be moderate. The linear and quadratic displacement fields are also adopted for the in-plane and out-of-plane displacements of the core, respectively. The assumption of moderate transverse strains requires a nonlinear constitutive equation which is obtained from a single-integral nonlinear viscoelastic model using the assumed order of magnitudes for linear strains and rotations. The 5th-order method... 

    Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect

    , Article Journal of Applied Physics ; Vol. 115, issue. 17 , May , 2014 ; ISSN: 00218979 Nazemnezhad, R ; Shokrollahi, H ; Hosseini-Hashemi, S ; Sharif University of Technology
    Abstract
    In this study, sandwich beam model (SM) is proposed for free vibration analysis of bilayer graphene nanoribbons (BLGNRs) with interlayer shear effect. This model also takes into account the intralayer (in-plane) stretch of graphene nanoribbons. The molecular dynamics (MD) simulations using the software LAMMPS and Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential are done to validate the accuracy of the sandwich model results. The MD simulation results include the two first frequencies of cantilever BLGNRs with different lengths and two interlayer shear moduli, i.e., 0.25 and 4.6GPa. These two interlayer shear moduli, 0.25 and 4.6GPa, can be obtained by sliding a small... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    A strain gradient based yield criterion

    , Article International Journal of Engineering Science ; Vol. 77 , 2014 , pp. 45-54 ; ISSN: 00207225 Rahaeifard, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Abstract
    The classical yield criteria do not describe the yield size-dependency that has been observed in micro-scale structures (Fleck, Muller, Ashby, & Hutchinson, 1994; Stolken and Evans 1998; Moreau et al. 2005), and may also significantly underestimate the yield loads of structures at micron and sub-micron scales (Son, Jeong, & Kwon, 2003; Liu et al., 2013). The present paper suggests a specific size-dependent yield criterion based on the strain gradient theory that is aimed at addressing this inadequacy. In order to develop the strain gradient based yield criterion, the deviatoric part of the strain energy is calculated based on this theory and equated to the deviatoric strain energy of a... 

    Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 91-99 ; ISSN: 02578972 Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive and aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings can be applied to combustion chamber to reduce fuel consumption and pollutions and also improve fatigue life of components. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS. The results of stress-strain hysteresis loop are validated by an out of phase thermo-mechanical fatigue test. Different thicknesses from 300 to 800. μm of top coat and also roughness of the interfaces are... 

    Carbon nanotube-based nano-fluidic devices

    , Article Journal of Physics D: Applied Physics ; Vol. 47, issue. 8 , 2014 ; ISSN: 00223727 Masoud Seyyed Fakhrabadi, M ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    The paper investigates the influences of fluid flow on static and dynamic behaviours of electrostatically actuated carbon nanotubes (CNTs) using strain gradient theory. This nonclassical elasticity theory is applied in order to obtain more accurate results possessing higher agreement with the experimental data. The effects of various fluid parameters such as the fluid viscosity, velocity, mass and temperature on the pull-in properties of the CNTs with two cantilever and doubly clamped boundary conditions are studied. The results reveal the applicability of the proposed nano-system as nano-valves or nano-fluidic sensors  

    Investigation of membrane preparation condition effect on the PSD and porosity of the membranes using a novel image processing technique

    , Article Journal of Applied Polymer Science ; Volume 131, Issue 4 , 15 February , 2014 ; ISSN: 00218995 Sharak, A. Z ; Samimi, A ; Mousavi, S. A ; Bozarjamhari, R. B ; Sharif University of Technology
    Abstract
    A totally computerized image processing program package is developed to analyze the SEM images of membrane surface and cross-section. Pore size distribution and porosity of the fabricated membranes are determined using the proposed image processing procedure. Furthermore, effect of coagulation bath temperature on the morphology and mechanical properties (such as tensile strength, strain break, tensile energy absorbent, and tensile stiffness) of Polysulfone (PSf) membranes are investigated. The results reveal that the mechanical properties are higher when N-methyl-2-pyrrolidone (NMP) is used as solvent. Also, an increase in the coagulation bath temperature caused a monotonous increase in the... 

    Comment on "A micro scale Timoshenko beam model based on strain gradient elasticity theory

    , Article European Journal of Mechanics, A/Solids ; 2014 ; ISSN: 09977538 Nojoumian, M. A ; Salarieh, H ; Sharif University of Technology
    Abstract
    A micro scale Timoshenko beam was modeled with strain gradient theory in "A micro scale Timoshenko beam model based on strain gradient elasticity theory" by Wang et al., European Journal of Mechanics - A/Solids, vol. 29, pp. 591-599, 7//2010. Looking at the modeling of the beam, a mistake in deriving the effect of classical moment has occurred. The classical boundary conditions of a Timoshenko beam could not be derived going backward from the strain gradient Timoshenko beam theory which has been presented in aforementioned paper. In this comment, the contradiction has been shown and the correct form of the boundary conditions and final equations has been derived  

    Softening behaviour of alumina reinforced copper processed by equal channel angular pressing

    , Article Materials Science and Technology (United Kingdom) ; Volume 30, Issue 2 , February , 2014 , Pages 220-226 ; ISSN: 02670836 Ranjbar Motlagh, S ; Maghsoudi, M. H ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In this present work, the softening behaviour of Cu-1·1 wt-%Al2O3 alloy containing nanometric alumina particles was investigated. Single pass equal channel angular pressing was first applied on cylindrical specimens, and then, the deformed samples were subjected to annealing treatments in the temperature range of 700-1000°C. Afterwards, finite element analysis, microstructural observations, Vickers hardness and shear punch testing were employed to study strain distribution as well as the recrystallisation behaviour of the examined alloy. It was found that the alloy is softened at 800°C or above, which shows its high thermal stability. Furthermore, a very fine completely recrystallised... 

    Flow stress analysis of ultrafine grained AA 1050 by plane strain compression test

    , Article Materials Science and Engineering A ; Vol. 593 , 2014 , pp. 136-144 ; ISSN: 09215093 Mohebbi, M. S ; Akbarzadeh, A ; Yoon, Y. O ; Kim, S. K ; Sharif University of Technology
    Abstract
    Plane strain compression (PSC) test was used to study the flow stress of ultrafine grained commercially pure aluminum at large strains. AA 1050 sheets were processed by various Accumulative Roll-Bonding (ARB) cycles up to 10 cycles as the initial specimens for the test. An approach was developed to measure the coefficient of friction and to suppress its effect on the results. It is shown that as a result of having an anisotropy parameter (R-value) of less than one, Von-Mises tensile strengths are significantly higher than PSC strengths. Comparing these strengths, the R-value as an average anisotropy parameter of rolling and transverse directions is estimated for the ARBed sheets, where it is... 

    Production of Cu-TiC nanocomposite using mechanical alloying route

    , Article Advanced Materials Research ; Vol. 829, issue , 2014 , pp. 572-576 ; ISSN: 10226680 Bagheri, G. A ; Abachi, P ; Purazrang, K ; Rostami, A ; Sharif University of Technology
    Abstract
    In this study, Cu-TiC nanocomposites were produced by high energy ball milling of elemental powders and in-situ formation of TiC in the copper matrix. Cu-40wt% Ti powder mixture were milled for 60 h, then graphite powder was added, subsequently milling was continued for further 10 h. Based on theoretical calculations, at this composite, the amount of TiC as reinforcement should be 60.25vol% (45.47wt%). The effect of milling time on solution progress of titanium in the copper lattice was studied by X-Ray diffraction analysis (XRD) with CuKα radiation. Considering XRD of Cu-40wt%TiC after 60 h milling data and Williamson-Hall relation, crystallite size and lattice strain of copper were... 

    A rate-dependent constitutive equation for 5052 aluminum diaphragms

    , Article Materials and Design ; Vol. 60, Issue 1 , 2014 , pp. 13-20 ; ISSN: 02613069 Hosseini Kordkheili, S. A ; Ashrafian, M. M ; Toozandehjani, H ; Sharif University of Technology
    Abstract
    In this article, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress-strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson-Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user... 

    Effects of cold severe plastic deformation and heating on dendritic and non-dendritic structures: A356 alloy

    , Article International Journal of Cast Metals Research ; Volume 27, Issue 5 , 1 October , 2014 , Pages 312-320 ; ISSN: 13640461 Dodangeh, A ; Kazeminezhad, M ; Aashuri, H ; Sharif University of Technology
    Abstract
    In this research the effects of cold deformation and heating to the semi-solid temperature on microstructure and mechanical properties of cast dendritic and non-dendritic structures of A356 alloy were investigated. To produce the non-dendritic samples, the semi-solid slurry was obtained by electromagnetic stirring and rheoforged and then the samples were heated to semi-solid temperature. In order to impose the deformation to the dendritic and non-dendritic samples, multidirectional forging process was used. Non-dendritic samples were deformed with applying one to three passes of the multidirectional forging and then were kept at the semi-solid range of temperature again. Microstructural and...