Loading...
Search for: stress-distribution
0.012 seconds
Total 48 records

    An investigation of fracture geometry in hydraulic fracturing on a gas reservoir well production enhancement

    , Article Petroleum Science and Technology ; Vol. 32, issue. 2 , 2014 , pp. 150-157 ; ISSN: 10916466 Baghbanan, A. R ; Parvazdavani, M ; Abbasi, S ; Rahnama, A. R ; Sharif University of Technology
    Abstract
    Utilizing improved production methods have been always challenging in upstream industries. Nowadays, hydraulic fracturing is one of the most prestigious mechanical methods. Application of this method is in wells with low productivity index. Hydraulic fracturing efficiency depends on various factors, such as fracture geometry, fluid composition, and stress distribution. But some of them would be ignored, such as fracture geometry, which is neglected due to nongravity and lack of investigation of DFN statistical population assumption. The authors develop a more comprehensive methodology based on fracture geometry and aim to model one of the gas reservoirs in Iran that is naturally fractured by... 

    Plaque structure affects mechanical stress distribution within blood vessels

    , Article Proceedings of the IASTED International Conference on Biomedical Engineering, BioMed 2014 ; 2014 , pp. 239-243 Mohseni, M ; Mehboudi, N ; Abdollahi, M ; Shamloo, A ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    The main goal of this study is to investigate the effects of plaque structure on its stress distribution. Rupture of plaque causes cerebrovascular diseases which lead to high mortality rates all over the world. Computers are powerful tools to understand the mechanism of plaque rupture. In this study, 3D fluid structure interaction simulation is constructed in ABAQUS 6.13 to clarify the relation between stress distribution of plaque and its structure. A model of common carotid artery with distributed stenosis was chosen for the simulation. To investigate the effects of plaque structure on stress distribution, thickness of fibrous cap and lipid core size were varied in the stenosis.... 

    Axisymmetric circular indentation of a half-space reinforced by a buried elastic thin film

    , Article Mathematics and Mechanics of Solids ; Vol. 19, issue. 6 , 2014 , p. 703-712 Ahmadi, S. F ; Eskandari, M ; Sharif University of Technology
    Abstract
    The analytical treatment of an axisymmetric rigid punch indentation of an isotropic half-space reinforced by a buried extensible thin film is addressed. With the aid of appropriate displacement potential functions, Hankel transforms, and some mathematical techniques, the mixed boundary value problem under consideration is reduced to a Fredholm integral equation of the second kind. The most interesting results of the problem, including the equivalent normal stiffness of the system and the contact stress distribution beneath the rigid punch, are expressed in terms of the solution of the obtained Fredholm integral equation. Some limiting cases corresponding to inextensible and extremely... 

    Study on effect of residual stress distributions on kinetics of static strain aging after cold rolling

    , Article Materials Science and Technology ; Volume 27, Issue 11 , 2011 , Pages 1620-1626 ; 02670836 (ISSN) Koohbor, B ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In the present research, the effect of residual stress distribution on the static strain aging (SSA) phenomenon in cold rolled steel was investigated. A three-dimensional model was employed to evaluate the residual stress distributions within the rolled strips, and hole drilling experiments were also performed to verify the data obtained from the mathematical model. Hardness and tensile tests were then performed on the cold rolled samples at different temperatures and aging periods, and the results of these tests were utilised to assess SSA behaviour after different rolling programs. The results show that SSA occurs within the cold rolled steel in the employed aging period, and its kinetics... 

    Kinetics of static strain aging after temper rolling of low carbon steel

    , Article Ironmaking and Steelmaking ; Volume 38, Issue 4 , 2011 , Pages 314-320 ; 03019233 (ISSN) Koohbor, B ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In this study, static strain aging behaviour of cold rolled steel strips was considered with emphasis on the distribution of residual hydrostatic stress developed during temper rolling. In order to assess residual stress distribution produced by the temper rolling, a three-dimensional model was first employed. Then, samples were rolled at a reduction of 4% under single and double pass rolling programmes and the kinetics of static strain aging phenomenon as well as the required activation energies were then evaluated using hardness and tensile tests on the deformed samples. Considering the predicted residual hydrostatic stress distribution, it was found that tensile hydrostatic stresses... 

    Transient growth of a micro-void in an infinite medium under thermal load with modified Zerilli–Armstrong model

    , Article Acta Mechanica ; Volume 227, Issue 4 , 2016 , Pages 943-953 ; 00015970 (ISSN) Baghani, M ; Eskandari, A. H ; Zakerzadeh, M. R ; Sharif University of Technology
    Abstract
    In this paper, the transient growth of a spherical micro-void under remote thermal load in an infinite medium is investigated. After developing the governing equations in the problem domain, the coupled nonlinear set of equations is solved through a numerical scheme. It is shown that a small cavity can grow rapidly as the temperature increases in a remote distance and may damage the material containing preexisting micro-voids. Conducting a transient thermal analysis simultaneously with a structural one reveals that the material may experience a peak in the radial stress distribution, which is five times larger compared to the steady-state one, and shows the importance of employing a... 

    Mass flow rate scaling of the continuum-based equations using information preservation method

    , Article 41st AIAA Thermophysics Conference2009, Article number 2009-3746 ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Vakilipour, S ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Kinetic theory based numerical scheme such as direct simulation Monte Carlo (DSMC) and information preservation (IP) schemes properly solve micro-nano flow problems in transition and free molecular regimes. However, the high computational cost of these methods encourages the researchers toward extending the applicability of the continuumbased equations beyond the slip flow regime. In addition to correct velocity profile, the continuum-based equations should predict accurate mass flow rate magnitude. The secondorder velocity slip models derived from the kinetic theory provide accurate velocity profiles up to Kn=0.5; however, they yield erroneous mass flow rate magnitudes because the basic... 

    A modified method for predicting the stresses around producing boreholes in an isotropic in-situ stress field

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 96 , 2017 , Pages 85-93 ; 13651609 (ISSN) Hassani, A. H ; Veyskarami, M ; Al Ajmi, A. M ; Masihi, M ; Sharif University of Technology
    Abstract
    Rock formations are always under in situ stresses due to overburden or tectonic stresses. Drilling a well will lead to stress redistribution around the well. Understanding such a stress redistribution, and adopting a proper failure criterion, play a vital role in predicting any potential wellbore failure. However, most of the published analytical models are based on assumptions that do not satisfy the boundary conditions during production, that is, when the well pressure is less than the pore pressure. This paper is aimed at the modeling of the stress regime around the wellbore through combining the poroelastic model with proper boundary conditions under different flow regimes. As a result,... 

    Rolling Contact Fatigue under Influence of Residual Stresses

    , M.Sc. Thesis Sharif University of Technology Masoudi Nejad, Reza (Author) ; Farahi, Gholamhossin (Supervisor)
    Abstract
    Rolling contact fatigue (RCF) phenomena is important in reducing the fatigue life and increasing the cost of maintenance. Accurate prediction of crack growth on wheels and the influence of residual stresses by FEM modeling can affect the maintenance planning. Therefore, investigation of rolling contact fatigue and its effect on rolling members life seem necessary. The first step to solve a rolling contact fatigue problem is the residual stress determination. In this research, wheel/rail contact is assumed. A bandage wheel with accurate geometry using finite element method is studied. For this purpose, a 3D elastic-plastic finite element model in ANSYS is conducted using model. The... 

    Numerical Modeling of the Behavior of Base Plates with Various Degrees of Rigidity

    , M.Sc. Thesis Sharif University of Technology Shafieifar, Mohamad Reza (Author) ; Khonsari, Vahid (Supervisor)
    Abstract
    Connections have a crucial role in the behavior of every structure. Amongst various types of connections used in steel structures are those used to connect the columns to the foundations, namely Base Plates. As other types of connections, base plates control the behavior of the structure in various respects including affecting the effective length of columns. The main task of any base plate is to distribute the forces of the column on the foundation in such a manner that the stresses in concrete are below their allowable values. Different configurations, with or without various attachments, are used for designing the base plates hence achieving various types of behavior with various levels... 

    Analyzing of Ring Rolling Process

    , M.Sc. Thesis Sharif University of Technology Zamani Kohpanji, Mohammad Reza (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    With the development of science and industry increasingly need for seamless and high-strength rings, the attention of many researchers and industrialists paid on the ring rolling process. Then, Studying details of ring rolling process is very important. The most important issues in ring rolling process which are not sufficiently considered are: stress components distribution in ring, real amounts of friction coefficient, pressure distribution over the rollers, required power, required torque and force, and finally the minimum thickness of the ring during the process, all of these parameters have developed as analytical functions. In the present study, the minimum possible thickness of the... 

    , M.Sc. Thesis Sharif University of Technology Kashani, Massoud (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    The paper presents the results nonlinear analysis of steel base plates subjected to different combinations of axial and bending forces. The bending forces range from small moments representing small eccentricities to large moments from seismic actions. The results of analyses proved to be in good agreement with experiments. The parameters investigated in this study are as follows: distribution of strain and stresses in the concrete foundation and the steel plate, the strains and stresses in the tensile anchorage bolts, the location of neutral curve under the base plate, the centre of compressional reaction forces in concrete, the flextural rigidity of the base plate connection, and the axial... 

    Elastic Contact Analysis of Two Symmetrical Punchs With a Half Plane in a Quasi-Static Condition Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology tarighati, Mohamad (Author) ; Adib Nazari, Saeid (Supervisor)
    Abstract
    Nowadays, the use of finite element Software applications in enigineering departments has become Inevitable and commonplace. Acceptance of the necessity of using such software applications for reducing the cost of research and development does not require any evidences of financial instruments to be presented. Reducing design and manufacture time together with pseudo-empirical approach has cuased the finite element science to become a conventional designing tools.
    Since contact is the main method to apply a load on a ductile object,and stress concentration caused thereby is often a major cause of failure in mechanical parts, the issue of contact is a fundamental topic in mechanics of... 

    Development of a Anatomical Finite Element Model for Ankle Sprain and Rehabilitation Exercise Simulation and Numerical Analysis of Tension in Ligament

    , M.Sc. Thesis Sharif University of Technology (Author) ; Firoozbakhsh, Keikhosrow (Supervisor) ; Farahmand, Farzam (Co-Advisor) ; Narimani, Roya (Co-Advisor)
    Abstract
    Foot related problems or diseases such as plan foot pain, diabetic foot, arthritic foot, pathological flatfoot, ankle sprain, bone fracture or other sports related injuries have been costing a significant amount of medical expenditure. Abnormal loading patterns and high pressure on the foot as well as improper or ill-fitting footwear are thought to be one major mechanical cause of foot problems. Most ankle sprains respond favorably to nonsurgical treatment, such as those offered by physical therapists, doctors of chiropractic, and rehabilitation specialists. A comprehensive history and examination aid in diagnosing the severity and type of ankle sprain. Based on the diagnosis and an... 

    Evaluating the Effect of Crumb Rubber on the Fracture Properties of Asphaltic Materials Using a Standardized Composite

    , M.Sc. Thesis Sharif University of Technology Ghanbari, Amir (Author) ; Motamed, Arash (Supervisor)
    Abstract
    Fatigue cracking has a major impact on the performance of flexible pavements. Many test methods have been established to evaluate and estimate the fatigue life of asphaltic materials. Most of these test methods cannot successfully examine the fatigue properties of asphaltic materials. Recent studies demonstrate that using a standardized composite, which consists of glass beads and asphalt binder, can simulate the stress states that binder experiences in the field. This research used standardized composite to investigate the effect of crumb rubber on the fracture properties of asphaltic materials. To validate the test results, the authors conducted fracture tests on the Fine Aggregate Matrix... 

    Investigation on Nonlinear Behavior of base Plates with Triangular Hardener under Axial Load and Bending Moment

    , M.Sc. Thesis Sharif University of Technology Sheibani, Mehran (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    The paper presents the results of nonlinear analysis of steel base plates subjected to different combinations of axial and bending forces. The bending forces range from small moments representing small eccentricities to large moments from seismic actions. The results of nonlinear analysis are done on three samples of the column base plate with large moment, small moment and compression axial force are compared to the results of the code. The parameters investigated in this study are as follows: distribution of strain and stresses in the concrete foundation and the steel plate, the strains and stresses in the tensile anchorage bolts, the location of neutral curve under the base plate, the... 

    A Nonlinear Layerwise Shell Finite Element for Delamination Analysis of Laminated Composite Structures under Large Deformation

    , Ph.D. Dissertation Sharif University of Technology Soltani, Zahra (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    This thesis aims to develop a numerically efficient nonlinear layer-wise shell element formulation for delamination analysis of laminated composite shell structures. The element, in a mesoscale scheme, is formulated based on a zig-zag theory and features three translational degrees of freedom for each node on the mid-surface of the shell in addition with two rotational degrees of freedom for each layer. In this way, the displacement field is formulated via adapting the Mindlin-Reissner theory in each layer and an ordered second-order algorithm for finite rotations. To verify the proposed formulation, many popular benchmark problems for geometric nonlinear analysis of shell problems are... 

    Design and Implementation of Wearable Device for Stress Level Measurement

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Amir Mohammad (Author) ; Fakharzadeh, Mohammad (Supervisor)
    Abstract
    An inseparable problem from human daily life is stress that causes problems such as heart disease and depression, so stress management and control is essential for the health of the individual and society. This thesis explores the possibility of stress detection using vital signs and machine learning algorithms. First, by examining the potential of unsupervised learning algorithms for stress detection, a general method is developed and the accuracy of the algorithm is evaluated with the ECG signals of a smart wristband made in Sharif University of Technology Biosen group as well as WESAD data set. The self-organizing map structure is created based on stress-related features and final result... 

    Fracture Behavior of Solder Joints under Varying Strain Rates as a Function of Loading History

    , M.Sc. Thesis Sharif University of Technology Karimi, Mojtaba (Author) ; Nourani, Amir (Supervisor)
    Abstract
    Single lap-shear (SLS) specimens of 2.54, 6.35 and 12.7 mm long SAC305 solder joints were prepared with three different adherend thicknesses. The fracture force was measured at a shear strain rate of 0.01 s-1 for different geometries in the lap-shear configuration in which mode ІІ loading is established. Elastic-plastic fracture mechanics (EPFM) theory was considered to find the energy dissipated in each case using a finite element model (FEM). The fracture energy was found by cohesive zone modeling (CZM) using pre-defined parameters. Both 2D and 3D models were used to explain the variations of fracture energy by evaluating the effective factors that demonstrated the level of constraints on... 

    Study of Shear Lag Effect on Non-rectangular RC Shear Walls

    , M.Sc. Thesis Sharif University of Technology Tabiee, Mohammad (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The present study aims to evaluate the effect of the shear-lag on non-rectangular RC shear walls and develop equations to determine the axial stress and strain distributions and calculate the effective flange width. Research has shown that a non-rectangular shear wall under a lateral load experiences the largest axial stress and strain in the flange-web cojunction. This phenomenon is referred to as the shear-lag effect and reduces the bending capacity of the shear wall. As a result, the effective flange width is typically defined to consider the shear lag effect. The present work first reviewed the literature on the effects of shear lag on non-rectangular RC shear walls. Then, flanged shear...