Loading...
Search for: stress-strain
0.009 seconds
Total 116 records

    Compressive Behavior of Confined Concrete Column with FRP Layers

    , M.Sc. Thesis Sharif University of Technology Mohammadian, Armita (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    In recent years, the use of fiber reinforced polymer (FRP) jackets, as an external lateral confinement has found considerable attention in retrofitting and strengthening existing reinforced concrete (RC) columns in earthquake prone areas. The FRP composites have numerous advantages such as ease in application, high strength and stiffness-weight ratio, no corrosion and negligible changes in the member dimension. Most of previous studies have concentrated on evaluation of the effect of confinement with spiral bars or FRP composites, separately. However, in practice both types of confinements exist in strengthening RC columns.
    This paper presents the results of a computational modeling to... 

    The Study of the Behavior of Semi-Rigid Beam-to-Column Connections During Fire

    , M.Sc. Thesis Sharif University of Technology Fattahian, Nima (Author) ; Khonsari, Vahid (Supervisor)
    Abstract
    Abstract- Due to vulnerability of metallic structures to fire, to have an advance estimate of the behaviour and performance of the structure during fire, can greatly assist the designers to make preparations and take precautionary measures to prevent excessive damage to the building. The study of the behaviour of a structure at high temperatures can be divided into two parts, that of its members, and that of its joints. The survey of the literature reveals that most of the previous work concentrated on the former, and it seems that there has not been much work on the latter. The objective of this project was to study the behaviour of structural joints at elevated temperatures, in general,... 

    A Modified JC Constitutive Equation for 5052 Aluminum with 0.3 mm Thickness Considering Loading Rate Effect at Quasi-Static Range

    , M.Sc. Thesis Sharif University of Technology Ashrafian, Mohammad Mahdi (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    In this thesis, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress-strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson-Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user... 

    Development of a Temperature-Dependent Constitutive Model for Anisotropic Metal Diaphragm Using Experimental Method

    , Ph.D. Dissertation Sharif University of Technology Ashrafian, Mohammad Mahdi (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    The purpose of this thesis is to use experimental and numerical tools to develop new constitutive models based on the Johnson Cook's model to predict the plastic deformation and failure of metallic diaphragms. Initially as the first case study, by designing and constructing a bulge test mechanism, the elastic-plastic behavior of 0.05 mm thickness pure aluminum diaphragms for a temperature range of 25-150℃ and large strains was extracted. Then, by presenting an innovative method, the biaxial stress-strain curves are transformed into uniaxial curves. By examining the observed behavior, a new constitutive model is developed based on the Johnson Cook's model. The ability of this constitutive... 

    Buckling analysis of tapered composite beams using a higher order finite element formulation

    , Article Journal of Reinforced Plastics and Composites ; Volume 29, Issue 17 , 2010 , Pages 2663-2683 ; 07316844 (ISSN) Zabihollah, A ; Ganesan, R ; Sharif University of Technology
    2010
    Abstract
    Tapered composite beams are increasingly being used in various engineering applications such as helicopter yoke, robot arms, and turbine blades. In the present work, the buckling analysis of laminated tapered composite beams is conducted using a higher order finite element formulation. In tapered laminates, the material and geometric discontinuities at ply drop-off locations lead to significant discontinuities in stress distributions. Higher order formulation ensures the continuity of the stress distribution through the thickness of a laminate as well as across the element interfaces, which is very important for the analysis of tapered laminates. In addition, higher order finite element... 

    A modified two-surface plasticity model for saturated and unsaturated soils

    , Article Indian Geotechnical Journal ; Volume 52, Issue 4 , 2022 , Pages 865-876 ; 09719555 (ISSN) Vahdani, M ; Hajitaheriha, M. M ; Hasani Motlagh, A ; Sadeghi, H ; Sharif University of Technology
    Springer  2022
    Abstract
    A modified two-surface critical state plasticity model for saturated and unsaturated soil is presented in this study. The key modification in new model is inclusion of an alternative yield surface used to simulate the behavior of unsaturated soils in addition to corresponding saturated conditions. Moreover, a numerical technique is used to obtain an incremental stress–strain response from loading curves. Modification is applied continuously in each incremental step to return the final stress states and hardening parameters to the yield surface. Results revealed that the adopted modeling approach can predict two independent sets of laboratory unsaturated experiments under various conditions... 

    Experimental study and constitutive modeling of polymer concrete's behavior in compression

    , Article Construction and Building Materials ; Volume 112 , 2016 , Pages 183-190 ; 09500618 (ISSN) Toufigh, V ; Hosseinali, M ; Shirkhorshidi, S. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this research, compressive and tensile behaviors of polymer concrete have been investigated. A series of tests were performed on polymer concrete (PC) specimens with different amounts of epoxy resin to investigate the effect of epoxy resin content on behavior of PC. For prediction of this behavior the disturbed state concept (DSC) has been used. The proposed model was then verified by predicting laboratory compressive tests used to find parameters along with independent data sets from other researchers. Moreover, the applicability of existing cement concrete models for predicting the behavior of PC was assessed since they are basically phenomenological, based on experimental observation... 

    Study of behavior of concrete under axial and triaxial compression

    , Article ACI Materials Journal ; Volume 114, Issue 4 , 2017 , Pages 619-629 ; 0889325X (ISSN) Toufigh, V ; Jafarian Abyaneh, M ; Jafari, K ; Sharif University of Technology
    American Concrete Institute  2017
    Abstract
    In this investigation, polymer concrete (PC) with three different epoxy resin contents, ordinary cement concrete (OCC), lightweight concrete (LWC), and lime-mortar soil (LMS) have been studied under uniaxial and triaxial compression tests to determine their mechanical behavior by measuring axial stress-strain and volumetric strain versus axial strain curves. According to the results, PC showed higher strength, ductility, and energy absorption than that of OCC and LWC. Then, nonlinear finite element analysis (NFEA) was implemented to predict the experimental results using hierarchical single-surface (HISS) failure criterion and disturbed state concept (DSC) to capture the elastoplastic... 

    The preparation and rheological investigation of polymer and hydrogel modified drilling mud

    , Article Petroleum Science and Technology ; Volume 30, Issue 10 , 2012 , Pages 1059-1068 ; 10916466 (ISSN) Tamsilian, Y ; Ramazani, S. A. A ; Khosravi, N ; Sharif University of Technology
    2012
    Abstract
    The authors carried out the study to prepare chitosan N-isopropylacrylamide hydrogel via heating and radiation processes. Properties investigation of prepared samples revealed that radiation prepared samples show higher yield and swelling ratios in comparison with the heating prepared ones. Effects of hydrogel addition to drilling mud on its important rheological properties such as apparent viscosity, plastic viscosity, and stress-strain behavior are measured. The rheological properties of hydrogel were compared with cellulosemethylcarboxyl and resins that are widely used in drilling fluid. The results demonstrate that whereas linear polymer effects on mud properties are more significant in... 

    Rheological and sedimentation behaviour of nanosilver colloids for inkjet printing

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 383-392 ; 17469392 (ISSN) Tamjid, E ; Guenther, B. H ; Sharif University of Technology
    2010
    Abstract
    Inkjet printing of colloidal metals is an attractive method for direct patterning of electrically conductive structures and interconnects in electronic devices, owing to low-cost, low-waste and simplicity of the process. In the present work, mixtures of well-dispersed silver nanoparticles and ethylene glycol were prepared for the inkjet printing process. Three different surfactants including PVP, MSA and AOT were added to study the stability of the nanosilver colloids. The effect of high-intensity ultrasonic treatment and temperature on the rheological properties was investigated utilising a rheometer in plate-plate geometry. It is shown that the viscosity of the ink increases with... 

    Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN

    , Article Materials and Design ; Volume 29, Issue 9 , 2008 , Pages 1701-1706 ; 02641275 (ISSN) Talebi Anaraki, M ; Sanjari, M ; Akbarzadeh, A ; Sharif University of Technology
    2008
    Abstract
    Inverse method and artificial neural network were employed in modeling the rheological behavior of the AZ61 Mg alloy. The hot deformation behavior of these alloys was investigated by compression tests in the temperature range 250-350 °C and strain rate range 0.0005-0.1 s-1. Investigation of stress-strain curves and microstructure of the compression specimen illustrate occurrence of dynamic recrystallization. To determining parameters of two suggested constitutive equations global optimization technique, genetic algorithm, was used. The predicted results by inverse method and ANN depicted a good agreement with the experimental data even if the ANN results has shown the best predicted... 

    Shear capacity of C-shaped and L-shaped angle shear connectors

    , Article PLoS ONE ; Volume 11, Issue 8 , 2016 ; 19326203 (ISSN) Tahmasbi, F ; Maleki, S ; Shariati, M ; Ramli Sulong, N. H ; Tahir, M. M ; Sharif University of Technology
    Public Library of Science 
    Abstract
    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress... 

    Determination of flow stress under hot deformation conditions

    , Article Materials Science and Engineering A ; Volume 552 , 2012 , Pages 566-568 ; 09215093 (ISSN) Solhjoo, S ; Sharif University of Technology
    2012
    Abstract
    In order to predict the flow stress curves up to peak under the hot working conditions two crucially modified models are presented. The modification is done by considering the effects of both temperature and strain rate. Besides, the ability of prediction at very low strains is added to them. Furthermore a new mathematical model has been developed to estimate the stress-strain curves beyond the peak via a secant hyperbolic function. The predicted results are found to be in accord with empirical values  

    Determination of critical strain for initiation of dynamic recrystallization

    , Article Materials and Design ; Volume 31, Issue 3 , 2010 , Pages 1360-1364 ; 02641275 (ISSN) Solhjoo, S ; Sharif University of Technology
    2010
    Abstract
    Using the work hardening rate-strain curves, an effective mathematical model has been developed to predict the stress-strain curves of alloy steel during hot deformation up to the peak stress regardless of the level of the strain, weather smaller or larger than the critical strain. This model is expressed in terms of peak stress, peak strain and one temperature-sensitive parameter, S. In addition, one new model, which is a function of peak strain, was proposed to predict the critical strain for the initiation of dynamic recrystallization using the second derivative of work hardening rate with respect to stress. Besides the theoretical study, the analysis is used to determine the... 

    Analysis of flow stress up to the peak at hot deformation

    , Article Materials and Design ; Volume 30, Issue 8 , 2009 , Pages 3036-3040 ; 02641275 (ISSN) Solhjoo, S ; Sharif University of Technology
    2009
    Abstract
    A mathematical model has been developed to predict stress-strain curve up to the peak stress at hot deformation. This model is based on the linear estimation of work hardening rate-stress curve up to the peak stress. This equation is expressed in terms of peak stress, peak strain. In addition, in order to find the value of peak strain, Zenner-Hollomon parameter is modified. The predicted results are found to be in accord with the experimental flow stress curves which can be used to predict the required deformation forces in hot deformation processes. © 2008 Elsevier Ltd. All rights reserved  

    Synergistic strengthening by severe plastic deformation and post-heat treatment of a low-carbon steel

    , Article Steel Research International ; Volume 89, Issue 6 , 2018 ; 16113683 (ISSN) Soleimani, F ; Kazeminezhad, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Low-carbon steel sheets are severely plastic deformed to strains of up to ≈3.48 and subsequently heat treated by conventional annealing followed by water-quenching. Four temperatures are chosen for the annealing below and over the Ac1 and Ac3 transformation lines. The effects of post-deformation heat treatment are investigated by evaluating the microstructure and mechanical properties, including strength, ductility, work hardening capability, and hardness. A maximum increase of 86% in the strength is obtained through intercritical annealing and quenching of the samples subjected to strain of 1.16. It is interesting that both the elongation and ultimate tensile strength values are higher... 

    Intrinsic expressions for arbitrary stress tensors conjugate to general strain tensors

    , Article Scientia Iranica ; Volume 14, Issue 5 , 2007 , Pages 486-493 ; 10263098 (ISSN) Sohrabpour, S ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    In this paper, a unified explicit tensorial relation is sought between two stress tensors conjugate to arbitrary and general Hill strains. The approach used for deriving the tensorial relation is based on the eigenprojection method. The result is, indeed, a generalization of the relations that were derived by Farahani and Naghadabadi [1] in 2003 from a component to intrinsic form. The result is unified in the sense that it is valid for all cases of distinct and coalescent principal stretches. Also, in the case of three dimensional Euclidean inner product space, using the derived unified relation, some expressions for the conjugate stress tensors are presented. © Sharif University of... 

    On the mechanical characteristics of graphene nanosheets: A fully nonlinear modified Morse model

    , Article Nanotechnology ; Volume 31, Issue 11 , 2020 Shoghmand Nazarloo, A ; Ahmadian, M ; Firoozbakhsh, K ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    In this paper, the mechanical properties of graphene nanosheets are evaluated based on the nonlinear modified Morse model. The interatomic interactions including stretching and bending of the covalent bonds between carbon atoms, are replaced by nonlinear extensional and torsional spring-like elements. The finite element method is implemented to analyze the model under different loading conditions and linear characteristics of the graphene structure including the Young's modulus, surface modulus, shear modulus and Poisson's ratio are evaluated for various geometries and chirality where these properties are shown to be size and aspect ratio dependent. It is also found that when the dimensions... 

    Investigation into characteristics of Portevin-Le Chatelier effect of an Al-Mg Alloy

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 9 , 2010 , Pages 1264-1267 ; 10599495 (ISSN) Sheikh, H ; Sharif University of Technology
    Abstract
    In this study, the plastic instabilities associated with the Portevin-Le Chatelier (PLC) and their effects on the mechanical properties and the fracture surfaces have been investigated for AA 5083. Tensile tests were performed at various temperatures and strain rates in order to do so. Then, serrated and smooth yielding domains were determined in Ln ε̇-1/T diagram. The stress-strain curves related to the serrated domain show the values of flow stress decreases by increasing the strain rate at a constant temperature. In addition, the plot of critical strain versus imposed strain rate indicates an inverse manner at very low strain rates. It is confirmed that the type of PLC bands alters the... 

    A thermodynamically consistent viscoelastic–viscoplastic constitutive model for self-healing materials

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 6 , 2018 , Pages 1065-1080 ; 1045389X (ISSN) Shahsavari, H ; Baghani, M ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Self-healing materials, as a class of intelligent materials, are capable to recover a part of the weakened mechanical properties induced by damage. In this article, based on the thermodynamics of irreversible processes, employing the effective configuration in the continuum damage-healing mechanics, a viscoelastic–viscoplastic constitutive model is presented. In the constitutive model development, we adopt an additive decomposition of the total strain into elastic, viscoelastic, and viscoplastic parts. In this regard, defining the damage and healing variables and employing the strain energy equivalence hypothesis, stress and strain tensors in the effective configuration are obtained....