Loading...
Search for: structural-dynamics
0.007 seconds
Total 90 records

    Developing a Compact Finite Difference Method for Solving Fluid - Solid Interaction in Incompressible Flow

    , M.Sc. Thesis Sharif University of Technology Parseh, Kaveh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, fluid-solid interaction (FSI) is simulated computationally by using a high-order accurate numerical method. The two-dimensional incompressible viscous flows are considered in the fluid domain. The primary problem with solutions of the incompressible Navier–Stokes equations is the difficulty of coupling changes in the velocity field with changes in the pressure field while satisfying the continuity equation. Herein, the artificial compressibility method is used to overcome this difficulty. Preconditioning is implemented to reduce the stiffness of the system of equations to increase the convergence rate of the solution. Using preconditioning, physical solutions even at low... 

    Aeroelastic Analysis of a Complete Aircraft Via State Space Modeling

    , M.Sc. Thesis Sharif University of Technology Ghobadi, Amir Hossein (Author) ; Keshavarz Haddad, Gholamreza (Supervisor)
    Abstract
    This dissertation presents aeroelastic stability analysis (flutter) pertinent to the complete flexible aircraft based on analytical dynamics, structural dynamics and aerodynamics. The unified formulation is based on fundamental principles and incorporates in a natural manner both rigid body motions of the aircraft as a whole and elastic deformations of the flexible components (fuselage, wing and empennage), as well as the aerodynamic, propulsion and gravity forces. The aircraft motion is described in terms of three translations and three rotations of a reference frame attached to the undeformed fuselage, and acting as aircraft body axes, and elastic displacements of each of the flexible... 

    On the Stability of Rotating Cylinder Conveying Flow in an External Fluid Medium

    , M.Sc. Thesis Sharif University of Technology Hojjati, Mohammad (Author) ; Dehghani Firoozabadi, Rouhollah (Supervisor)
    Abstract
    The present study aims at investigating the stability of flexible spinning cylinders conveying flow in an external fluid Medium. Using the linearized Navier-Stokes equations for the flow, a two-dimensional model is developed governing the fluid motion. The resultant force exerted on the flexible cylinder wall due to the fluid interactions is calculated as a function of the lateral acceleration. Applying the Hamilton principle, the governing equations of flexural vibration of the rotary flexible cylinder mounted on simply supported axles are derived. Having the forces due to the conveying fluid calculated and substituting into the governing equations, a coupled field governing equations of... 

    Wake and structure model for simulation of cross-flow/in-line vortex induced vibration of marine risers

    , Article Journal of Vibroengineering ; Volume 20, Issue 1 , February , 2018 , Pages 152-164 ; 13928716 (ISSN) Komachi, Y ; Mazaheri, S ; Tabeshpour, M. R ; Sharif University of Technology
    JVE International  2018
    Abstract
    Three dimensional responses of riser subjected to Vortex Induced Vibration (VIV) are investigated. Proportionality relations of stress and fatigue damage are mentioned. A computer code has been developed for time domain modeling of VIV of riser accounting for both Cross-Flow (CF) and In-Line (IL) vibration. The wake oscillator model is used to calculate the VIV of each strip. The wake oscillators are coupled to the dynamics of the long riser, while the Newmark-beta method is used for evaluating the structural dynamics of riser. The wake dynamics, including IL and CF vibrations, is represented using a pair of non-linear Van der Pol equations that solved using modified Euler method. The... 

    Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers

    , Article Ocean Engineering ; Volume 172 , 2019 , Pages 286-295 ; 00298018 (ISSN) Hemmati, A ; Oterkus, E ; Khorasanchi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Highly dynamic nature of the applied loads on flexible and lightly damped offshore wind turbine (OWT) foundations affects the lifetime and serviceability of the system. In this study, the excessive vibration responses of OWTs are minimized using tuned mass dampers (TMD) and tuned liquid column dampers (TLCD). Due to high efficiency of TLCDs and TMDs for certain loading conditions, a combined TLCD-TMD is also utilized to improve the overall performance in a wide range of loading conditions. First, a parametric study was performed that highlights the sensitivity of these structural control devices. The effect of two devices on fixed offshore wind turbine foundations for the benchmark 5 MW NREL... 

    Vibration analysis of spinning cylindrical shell made of functionally graded material using higher order shear deformation theory

    , Article 7th European Conference on Structural Dynamics, EURODYN 2008, 7 July 2008 through 9 July 2008 ; 2008 ; 9780854328826 (ISBN) Kargarnovin, M. H ; Mehrparvar, M ; Najafizadeh, A ; Sharif University of Technology
    University of Southampton, Institute of Sound Vibration and Research  2008
    Abstract
    In this paper the vibration of a spinning cylindrical shell made of functional graded material (FGM) made is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. In the next step by utilizing energy method and Hamilton's principle governing deferential equation of spinning cylindrical shell is obtained. By making use of the principle of minimum potential energy, the characteristic equation of natural frequencies is derived. After verification of the results, the effect of changing different parameters such as material grade, L/R, h/R, and spinning velocity on the natural frequency are... 

    The Flexural instability of spinning flexible cylinder partially filled with viscous liquid

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 77, Issue 1 , September , 2010 , Pages 1-9 ; 00218936 (ISSN) Firouz Abadi, R. D ; Haddadpour, H ; Sharif University of Technology
    2010
    Abstract
    This paper deals with the flexural instability of flexible spinning cylinders partially filled with viscous fluid. Using the linearized Navier-Stokes equations for the incompressible flow, a two-dimensional model is developed for fluid motion. The resultant force exerted on the flexible cylinder wall as the result of the fluid motion is calculated as a function of lateral acceleration of the cylinder axis in the Laplace domain. Applying the Hamilton principle, the governing equations of flexural motion of the rotary flexible cylinder mounted on general viscoelastic supports are derived. Then combining the equations describing the fluid force on the flexible cylinder with the structural... 

    Stability control of a novel frame integrated with an SMA-MRF control system for marine structural applications based on the frequency analysis

    , Article Applied Ocean Research ; Volume 97 , 2020 Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Structural integrity and ensuring the stability of steel frame structures, including marine and coastal structures, are the main challenges for designers in civil infrastructures, particularly in oil platforms, subjected to tough periodic and non-periodic environmental loading conditions. Variable loadings with different amplitudes and frequencies may lead to the stability of steel structures loss. In order to keep the stability of the steel structures and prevent possible damages, reliable yet efficient structural control systems are in demand. Conventional structural control systems need significant activation energy and/or in-depth users knowledge to be effective. Most recently, smart... 

    Stability analysis of whirling composite shells partially filled with two liquid phases

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 5 , 2017 , Pages 2117-2127 ; 1738494X (ISSN) Sahebnasagh, M ; Nikkhah Bahrami, M ; Firouz Abadi, R ; Sharif University of Technology
    Abstract
    In this paper, the stability of whirling composite cylindrical shells partially filled with two liquid phases is studied. Using the first-order shear shell theory, the structural dynamics of the shell is modeled and based on the Navier-Stokes equations for ideal liquid, a 2D model is developed for liquid motion at each section of the cylinder. In steady state condition, liquids are supposed to locate according to mass density. In this study, the thick shells are investigated. Using boundary conditions between liquids, the model of coupled fluid-structure system is obtained. This coupled fluid-structure model is employed to determine the critical speed of the system. The effects of the main... 

    Simulation of 2D fluid–structure interaction in inviscid compressible flows using a cell-vertex central difference finite volume method

    , Article Journal of Fluids and Structures ; Volume 67 , 2016 , Pages 190-218 ; 08899746 (ISSN) Hejranfar, K ; Azampour, M. H ; Sharif University of Technology
    Academic Press 
    Abstract
    In the present study, the applicability and accuracy of a cell-vertex finite volume method developed are assessed in simulating 2D fluid–structure interaction in inviscid compressible flows where the nonlinear phenomena exist in both the unsteady transonic fluid flows and the large nonlinear deformation of solid structures. The unsteady Euler equations are considered as the governing equations of the fluid flow in the arbitrary Lagrangian–Eulerian form and the large nonlinear deformation of the solid structure is considered to be governed by the Cauchy equations in the total Lagrangian form. Both the domains are discretized by a second-order central-difference cell-vertex finite volume... 

    Shell-like instability of large diameter single-walled carbon nanotubes conveying fluid

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 11 , 2012 , Pages 3389-3397 ; 1738494X (ISSN) Ali-Akbari, H. R ; Firouz Abadi, R. D ; Haddadpour, H ; Noorian, M. A ; Sharif University of Technology
    2012
    Abstract
    The instability of large diameter single-walled carbon nanotubes (SWCNTs) conveying fluid is investigated based on the molecular mechanics. Using the modal expansion for structural displacements, the governing equations of coupled fluid-structural dynamics of SWCNTs are derived. The natural frequencies and mode shape of the SWCNTs are obtained based on the molecular structural mechanics to account for the effect of chirality and discrete nature of SWCNTs. The results show that the vibrational behavior of large diameter SWCNTs conveying fluid is size dependent, but the effect of chirality is negligible. The obtained results are compared with the equivalent continuum-based model in the... 

    Semiactive viscous tensile bracing system

    , Article Journal of Structural Engineering ; Volume 135, Issue 4 , 2009 , Pages 425-436 ; 07339445 (ISSN) Rahani, E.K ; Bakhshi, A ; Golafshani, A.A ; Sharif University of Technology
    2009
    Abstract
    Structural control using energy dissipater devices is emerging as a heavily researched strategy in earthquake engineering. Among several control systems, semiactive control is usually possible and efficient. In this research, a semiactive energy dissipating bracing system based on a viscous damper is proposed. In the conventional bracing systems, it is assumed that the braces can buckle under compression. Therefore, a semiactive on-off brace strategy is implemented to improve the conventional brace performance. Further, an energy absorbing mechanism is implemented. In the proposed system, the buckling of the member is prevented by implementing a one-way valve device. The permanent story... 

    Seismic performance evaluation and design of steel structures equipped with dual-pipe dampers

    , Article Journal of Constructional Steel Research ; Volume 122 , 2016 , Pages 25-39 ; 0143974X (ISSN) Mahjoubi, S ; Maleki, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Dual-pipe damper (DPD) is a metallic yielding device for passive control of structures, introduced recently by the authors. The objective of the current study is to provide guidelines for implementing DPDs in actual steel buildings, evaluate and compare their performance against other metallic dampers. In this study, a representative load-displacement model for DPDs is proposed for the first time, and assessed based on previous experimental cyclic tests. Guidelines for the design of DPD devices are also presented. Three steel moment resisting frames of 5, 10 and 20 stories are designed and then equipped with DPDs of various properties. The responses of the frames to seven earthquake... 

    Seismic performance assessment of steel frames equipped with a novel passive damper using a new damper performance index

    , Article Structural Control and Health Monitoring ; Volume 22, Issue 4 , 2015 , Pages 774-797 ; 15452255 (ISSN) Mahjoubi, S ; Maleki, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    Seismic response of steel moment-resisting frames equipped with a novel passive damper called infilled-pipe damper (IPD) is investigated in this study. The IPD is a very economical and easily assembled structural control device with high energy absorption, invented recently by the authors. A simplified trilinear load-displacement model for IPD devices is suggested to be used in this study and further investigations. Next, criteria for IPD elements size selection are proposed for passive control of structures against earthquake loads. Steel frame structures of 5, 10, and 20 stories are designed without any IPD devices. Then, the frames are equipped with IPDs of different stiffness. The frames... 

    Seismic assessment of concrete gravity dams using capacity estimation and damage indexes

    , Article Earthquake Engineering and Structural Dynamics ; Volume 42, Issue 1 , 2013 , Pages 123-144 ; 00988847 (ISSN) Alembagheri, M ; Ghaemian, M ; Sharif University of Technology
    2013
    Abstract
    A new concept to determine state of the damage in concrete gravity dams is introduced. The Pine Flat concrete gravity dam has been selected for the purpose of the analysis and its structural capacity, assuming no sliding plane and rigid foundation, has been estimated using the two well-known methods: nonlinear static pushover (SPO) and incremental dynamic analysis (IDA). With the use of these two methods, performance and various limit states of the dam have been determined, and three damage indexes have been proposed on the basis of the comparison of seismic demands and the dam's capacity. It is concluded that the SPO and IDA can be effectively used to develop indexes for seismic performance... 

    Reliable nonlinear hybrid simulation using modified operator splitting technique

    , Article Structural Control and Health Monitoring ; 2018 ; 15452255 (ISSN) Zakersalehi, M ; Tasnimi, A. A ; Ahmadizadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    One of the main challenges of hybrid simulation is developing integration methods that not only provide accurate and stable results but also are compatible with the hybrid simulation circumstances. This paper presents a novel enhanced integration technique for hybrid simulation termed “modified operator splitting” (MOS) method. The main aim of the MOS technique is to improve the precision of the operator splitting (OS) method by reducing the corrector step length, where initial stiffness is utilized instead of actual stiffness. For this purpose, a new algorithm is proposed, which makes a more precise estimation of the predictor displacement; thus minimizes the effect of the corrective... 

    Reliable nonlinear hybrid simulation using modified operator splitting technique

    , Article Structural Control and Health Monitoring ; Volume 26, Issue 1 , 2019 ; 15452255 (ISSN) Zakersalehi, M ; Tasnimi, A. A ; Ahmadizadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    One of the main challenges of hybrid simulation is developing integration methods that not only provide accurate and stable results but also are compatible with the hybrid simulation circumstances. This paper presents a novel enhanced integration technique for hybrid simulation termed “modified operator splitting” (MOS) method. The main aim of the MOS technique is to improve the precision of the operator splitting (OS) method by reducing the corrector step length, where initial stiffness is utilized instead of actual stiffness. For this purpose, a new algorithm is proposed, which makes a more precise estimation of the predictor displacement; thus minimizes the effect of the corrective... 

    Reliable nonlinear hybrid simulation using modified operator splitting technique

    , Article Structural Control and Health Monitoring ; Volume 26, Issue 1 , 2019 ; 15452255 (ISSN) Zakersalehi, M ; Tasnimi, A. A ; Ahmadizadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    One of the main challenges of hybrid simulation is developing integration methods that not only provide accurate and stable results but also are compatible with the hybrid simulation circumstances. This paper presents a novel enhanced integration technique for hybrid simulation termed “modified operator splitting” (MOS) method. The main aim of the MOS technique is to improve the precision of the operator splitting (OS) method by reducing the corrector step length, where initial stiffness is utilized instead of actual stiffness. For this purpose, a new algorithm is proposed, which makes a more precise estimation of the predictor displacement; thus minimizes the effect of the corrective... 

    Reliability-based optimization of an active vibration controller using evolutionary algorithms

    , Article Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 26 March 2017 through 29 March 2017 ; Volume 10168 , 2017 ; 0277786X (ISSN); 9781510608214 (ISBN) Saraygord Afshari, S ; Pourtakdoust, S. H ; Fiberguide Industries; Frontiers Media; OZ Optics, Ltd.; Polytec, Inc.; The Society of Photo-Optical Instrumentation Engineers (SPIE) ; Sharif University of Technology
    SPIE  2017
    Abstract
    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost... 

    Quench dynamics in one-dimensional optomechanical arrays

    , Article Physical Review A ; Volume 101, Issue 2 , 2020 Raeisi, S ; Marquardt, F ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    Nonequilibrium dynamics induced by rapid changes of external parameters is relevant for a wide range of scenarios across many domains of physics. For waves in spatially periodic systems, quenches will alter the band structure and generate new excitations. In the case of topological band structures, defect modes at boundaries can be generated or destroyed when quenching through a topological phase transition. Here, we show that optomechanical arrays are a promising platform for studying such dynamics, as their band structure can be tuned temporally by a control laser. We study the creation of nonequilibrium optical and mechanical excitations in one-dimensional arrays, including a bosonic...