Loading...
Search for: structures-and-design
0.008 seconds
Total 154 records

    Comparison of wellbore stability of UBD in the case of laser drilling and conventional operation

    , Article 76th European Association of Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy - Incorporating SPE EUROPEC 2014 ; 2014 , Pages 1736-1740 ; ISBN: 9781632666949 Bazargan, M ; Nakhaee, A ; Koohian, A ; Irawan, S ; Habibpour, M ; Shahvar, M ; Sharif University of Technology
    Abstract
    In recent years, growing interest in underbalanced drilling has resulted in the rapid development of its associated equipment technology, practices, and procedures. Underbalanced drilling is used to avoid lost circulation, formation damage, and decreasing weight on bit. However, the risk of wellbore collapse due to lake of hydrostatic mud pressure is high; therefore, using good geo-mechanical model may avoid wellbore instability problems. In order to evaluate the potential for wellbore instability, it is necessary to use an elastoplastic model to compute the stresses and strains around the bore hole. Furthermore, it should be mentioned that the laser drilling process depends extremely on the... 

    Numerical properties of second order integration algorithms for plasticity models

    , Article Research and Applications in Structural Engineering, Mechanics and Computation - Proceedings of the 5th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2013 ; 2013 , Pages 443-448 ; 9781138000612 (ISBN) Jahanshahi, M ; Sharif University of Technology
    2013
    Abstract
    Investigating the behavior of materials in plastic limit is very important in different fields of engineering. Due to the simplicity of implementation and numerical stability, implicit types of algorithms are conventionally used to deal with plasticity problems. The backward Euler method as a first order accurate algorithm has proven very efficient for integrating the rate form of differential equations governing the behavior of different plasticity models. However, it is desirable to have algorithms with superior performance and quadratic rate of convergence compared with backward Euler method. Many second order integration algorithms have been proposed in the literature which are majorly... 

    A novel low power 8T-cell sub-threshold SRAM with improved read-SNM

    , Article Proceedings of the 2013 8th International Conference on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2013 ; 2013 , Pages 35-38 ; 9781467360388 (ISBN) Hassanzadeh, S ; Zamani, M ; Hajsadeghi, K ; Saeidi, R ; Sharif University of Technology
    2013
    Abstract
    The fast growth of battery-operated portable applications has compelled the static random access memory (SRAM) designers to consider sub-threshold operation as a viable choice to reduce the power consumption. To increase the hold, read and write static noise margin (SNM) in the sub-threshold regime many structures has been proposed adding extra transistors to the conventional 6T-cell. In this paper we propose a new 8T-cell SRAM that shows 90% improvement in read SNM while write and hold SNM reduction can be ignored (this negligible reduction is due to the two stack transistors in the proposed 8T-cell). Benefiting differential output voltage in the read operation, sense amplifier design is... 

    Dynamic response of a delaminated composite beam with general lay-ups based on the first-order shear deformation theory

    , Article Composites Part B: Engineering ; Volume 55 , 2013 , Pages 65-78 ; 13598368 (ISSN) Jafari Talookolaei, R. A ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The dynamic response analysis of a delaminated composite beam with a general lay-up traversed under an arbitrary moving/non-moving force is presented. By employing the energy method and introducing a new finite element, the global mass and stiffness matrices for a Laminated Composite Beam (LCB) of Timoshenko type are derived in which the material couplings (bending-tension, bending-twist, and tension-twist couplings) with the Poisson's effect are considered. In deriving the governing equation the non-penetration condition is imposed by employing the method of Lagrange multipliers. Out of a self-developed finite element program, the natural frequencies and time response of such LCB are... 

    An investigation on the effect of cement and silica fume on properties of self-compacting concrete

    , Article Proceedings of the 13th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2013 ; September , 2013 Moshiri, F ; Atashnama, A ; Panahi, M ; Gharebaghi, R ; Mahlouji, J ; Sharif University of Technology
    Hokkaido University collection of Scholarly Academic Papers, HUSCAP  2013
    Abstract
    Self-Compacting concrete (SCC) is identified as a high performance concrete with the ability of self compaction, using its own weight without any external vibration. SCC is able to fill congested area and voids, even in highly reinforced concrete members whilst it flows without segregation. The fresh properties of SCC such as workability can be determined using different tests including slump-flow, J ring, V-funnel, U box, L box, GTM and column technique. In this paper the effect of different amount of cementitious material, silica fume and W/C ratios on workability and compressive strength of SCC are investigated. The results indicate that the workability of mixtures is reduced by... 

    Flexural behavior of concrete beams reinforced with high volume steel fibers

    , Article ISEC 2013 - 7th International Structural Engineering and Construction Conference: New Developments in Structural Engineering and Construction ; 2013 , Pages 1031-1036 ; 9810753551 (ISBN) ; 9789810753559 (ISBN) Khaloo, A ; Jahromi, H. S ; Mohammadian, A ; Yazdani S ; Singh A ; Sharif University of Technology
    2013
    Abstract
    This paper presents the results of an experimental study on the flexural behavior of ten 10 × 15 × 120 (cm) steel reinforced high strength concrete beams under deflection control loading conditions. Test variable includes volumetric percentage of steel fibers (0%, 1.5%, 3%, 4%, 5%). The plain concrete strength was 30MPa. The monotonic concentrated load was applied at the center of the beam, the relative deflection was measured, and demec points were used to determine curvature of the beam. Load-deflection and moment-curvature diagrams have been obtained and plotted for each beam individually. Test results indicate that higher fiber content considerably improves flexural behavior and provides... 

    Validity and size-dependency of Cauchy-Born hypothesis with Tersoff potential in silicon nano-structures

    , Article Computational Materials Science ; Volume 63 , 2012 , Pages 168-177 ; 09270256 (ISSN) Khoei, A. R ; Dormohammadi, H ; Sharif University of Technology
    Elsevier  2012
    Abstract
    One of the most popular constitutive rules that correlate the continuum and atomic properties in multi-scale models is the Cauchy-Born (CB) hypothesis. Based on this constitutive law of continuum media, it assumes that all atoms follow the deformation subjected to the boundary of crystal. In this paper, the validity and failure of CB hypothesis are investigated for the silicon nano-structure by comparison of the continuum and atomic properties. In the atomistic level, the stresses and position of atoms are calculated using the molecular dynamics (MD) simulation based on the Tersoff inter-atomic potential. The stresses and strains are compared between the atomistic and continuous media to... 

    Dye-sensitized solar cells based on a single layer deposition of TiO 2 from a new formulation paste and their photovoltaic performance

    , Article Solar Energy ; Volume 86, Issue 9 , 2012 , Pages 2654-2664 ; 0038092X (ISSN) Mohammadi, M. R ; Louca, R. R. M ; Fray, D. J ; Welland, M. E ; Sharif University of Technology
    Abstract
    A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2... 

    Dual criterion equivalent linearization approach for yielding structures under earthquake excitation

    , Article Structural Design of Tall and Special Buildings ; Volume 21, Issue 3 , 2012 , Pages 155-177 ; 15417794 (ISSN) Rahmatabadi, P ; Khaloo, A ; Sharif University of Technology
    Abstract
    In order to estimate both maximum displacement and maximum inertia force of bilinear hysteretic system subjected to earthquake motions, an equivalent linearization approach with new effective parameters is presented. Effective mass and effective damping ratio as pair of effective parameters instead of the effective period and effective damping ratio in existing equivalent linear systems are introduced. Two error measures for displacement and inertia force are defined. Error distributions over a two-dimensional parameter space of effective parameters are analysed, and the parameters are determined through a statistical approach with a dual optimization criterion for displacement and inertia... 

    Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms

    , Article Structural Design of Tall and Special Buildings ; Volume 21, Issue 1 , 2012 , Pages 57-76 ; 15417794 (ISSN) Mohebbi, M ; Joghataie, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the capabilities of tuned mass dampers (TMDs) for the mitigation of response of nonlinear frame structures subjected to earthquakes have been studied. To determine the optimal parameters of a TMD, including its mass, stiffness and damping, we developed an optimization algorithm based on the minimization of a performance index, defined as a function of the response of the nonlinear structure to be controlled. Distributed genetic algorithm has been used to solve the optimization problem. For illustration, the method has been applied to the design of a linear TMD for an eight-story nonlinear shear building with bilinear hysteretic material behavior subjected to earthquake. The... 

    Optimal tuning of linear controllers for power electronics/power systems applications

    , Article Electric Power Systems Research ; Volume 81, Issue 12 , 2011 , Pages 2188-2197 ; 03787796 (ISSN) Hasanzadeh, A ; Edrington, C. S ; Mokhtari, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a new method for tuning various linear controllers such as Proportional-Integral (PI), Proportional-Integral-Derivative (PID) and Proportional-Resonant (PR) structures which are frequently used in power electronics and power system applications. The linear controllers maintain a general structure defined by the Internal Model Principle (IMP) of control theory. The proposed method in this paper is twofold. The first perspective uses the well-known concept of the Linear Quadratic Regulator (LQR) to address the problem as a regulation problem. The Q matrix of the LQR design is then finely adjusted in order to assure the desired transient response for the system. The second... 

    Static analysis of electrically actuated nano to micron scale beams using nonlocal theory

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 391-396 ; 9780791854846 (ISBN) Vaghasloo, Y. A ; Pasharavesh, A ; Ahmadian, M. T ; Fallah, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, size dependent static behavior of micro and nano cantilevers actuated by a static electric field including deflection and pull-in instability, is analyzed implementing nonlocal theory. Euler-bernoulli assumptions are made to model the relation between deflection of the beam and bending moment. Differential form of the constitutive equation of nonlocal theory is used to find the revised equation for bending moment and substituting in the equilibrium equation of electrostatically actuated beams final nonlinear ordinary differential equation is arrived. Also the boundary conditions for solving the equation are revised and to analyze the size effect better governing equation is... 

    Application-aware topology reconfiguration for on-chip networks

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 19, Issue 11 , 2011 , Pages 2010-2022 ; 10638210 (ISSN) Modarressi, M ; Tavakkol, A ; Sarbazi Azad, H ; Sharif University of Technology
    Abstract
    In this paper, we present a reconfigurable architecture for networks-on-chip (NoC) on which arbitrary application-specific topologies can be implemented. When a new application starts, the proposed NoC tailors its topology to the application traffic pattern by changing the inter-router connections to some predefined configuration corresponding to the application. It addresses one of the main drawbacks of the existing application-specific NoC optimization methods, i.e., optimization of NoCs based on the traffic pattern of a single application. Supporting multiple applications is a critical feature of an NoC when several different applications are integrated into a single modern and complex... 

    Design of tensegrity structures for supporting deployable mesh antennas

    , Article Scientia Iranica ; Volume 18, Issue 5 , October , 2011 , Pages 1078-1087 ; 10263098 (ISSN) Fazli, N ; Abedian, A ; Sharif University of Technology
    2011
    Abstract
    This paper is an attempt to develop a design methodology for a special deployable structure for potential use in micro-satellites. The basic form of this structure is a hexagonal prismatic tensegrity structure, which, after being rigidified, is used as the supporting structure of a mesh-like antenna. Here, the objectives of presenting the design methodology are to prevent structural elements from failure, while maintaining the structural natural frequency and mesh tension above an intended value and in addition, to minimize the overall mass. Here, the suggested design strategy combines the need for a behavioral study (i.e. fast and wide range evaluation) at the beginning of the design, with... 

    Investigation on the seismic behavior of steel MRF with shape memory alloy equipped connections

    , Article Procedia Engineering ; Volume 14 , 2011 , Pages 3325-3330 ; 18777058 (ISSN) Rofooei, F. R ; Farhidzadeh, A ; Sharif University of Technology
    2011
    Abstract
    Shape Memory Alloys (SMA) are among the new passive control devices that have gained a large attention due to its inherent features, i.e., recovering the induced residual strains upon unloading (superelastic effect) or by heating (shape memory effect). In this work, the seismic behavior of a set of steel structural models with different number of stories and eccentricities equipped with a type of fixed SMA connections is investigated. Considering an existing SMA connection model in austenite phase, the related moment-rotation behavior is verified through numerical simulation. Then, extensive nonlinear dynamic analyses are performed using a number of 3, 6, 9, and 12 story structural models... 

    Modeling and optimization of an ultrasonic setup basedon combination of finite element method and mathematical full factorial design

    , Article Advanced Materials Research, 6 August 2011 through 7 August 2011, Dalian ; Volume 320 , 2011 , Pages 553-558 ; 10226680 (ISSN) ; 9783037852118 (ISBN) Ghahramani Nick, M ; Akbari, J ; Movahhedy, M. R ; Hoseini, S. M ; Sharif University of Technology
    2011
    Abstract
    Ultrasonic assisted machining (UAM) is an efficient nontraditional machining operation for brittle, hard-to-cut and poor-machinability materials. In UAM, high frequency oscillation in ultrasonic range at low amplitude is imposed on the workpiece or cutting tool. In most cases, the equipments that generates and transfers the vibration, have a complicated structure, and requires significant effort to achieve their optimum function. In this work, a mathematical model is developed and an optimization method is employed for design process. This makes it possible to achieve proper setup and reduce the amount of calculation. For this purpose, the combination of a two level full factorial design is... 

    Application of endurance time method in seismic assessment of steel frames

    , Article Engineering Structures ; Volume 33, Issue 9 , 2011 , Pages 2535-2546 ; 01410296 (ISSN) Estekanchi, H. E ; Riahi, H. T ; Vafai, A ; Sharif University of Technology
    Abstract
    In this paper, application of a new dynamic procedure called Endurance Time (ET) method in seismic analysis of steel frames is explained. In this method, structures are subjected to gradually intensifying ground shaking and their performance is assessed based on their response considering relevant design criteria at each intensity level. By considerably reducing the number of time history analyses for assessment of structural response at different intensities, this procedure tends to pave a way for practical performance based design of structures. The accuracy of ET method in predicting the response of structures in linear and nonlinear analysis is investigated by considering a set of steel... 

    Estimating seismic demand parameters using the endurance time method

    , Article Journal of Zhejiang University: Science A ; Volume 12, Issue 8 , 2011 , Pages 616-626 ; 1673565X (ISSN) Madarshahian, R ; Estekanchi, H ; Mahvashmohammadi, A ; Sharif University of Technology
    2011
    Abstract
    The endurance time (ET) method is a time history based dynamic analysis in which structures are subjected to gradually intensifying excitations and their performances are judged based on their responses at various excitation levels. Using this method, the computational effort required for estimating probable seismic demand parameters can be reduced by an order of magnitude. Calculation of the maximum displacement or target displacement is a basic requirement for estimating performance based on structural design. The purpose of this paper is to compare the results of the nonlinear ET method with the nonlinear static pushover (NSP) method of FEMA 356 by evaluating performances and target... 

    Optimal damper placement in steel frames by the endurance time method

    , Article Structural Design of Tall and Special Buildings ; Volume 20, Issue 5 , 2011 , Pages 612-630 ; 15417794 (ISSN) Estekanchi, H. E ; Basim, M. C ; Sharif University of Technology
    Abstract
    Performance-based optimal seismic design of structures requires repetitive and massive dynamic analyses. In the Endurance Time (ET) method, structures are subjected to specially designed intensifying acceleration functions and their response at various excitation levels is estimated by each single response-history analysis, thus, significantly reducing the required computational demand. In this paper, the ET method is utilized to acquire optimal placement of viscous dampers in short steel frames with the target of obtaining the desirable performance in two hazard levels simultaneously. In the optimization procedure, the damping coefficients of the added dampers are treated as design... 

    Selection of empirical formulae for design of stepped spillways on RCC dams

    , Article World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress, 22 May 2011 through 26 May 2011 ; May , 2011 , Pages 2508-2517 ; 9780784411735 (ISBN) Sarfaraz, M ; Attari, J ; Sharif University of Technology
    2011
    Abstract
    Stepped spillways have been widely used in Roller Compacted Concrete (RCC) dams in the recent decades. Considering complexity of hydraulics of stepped chutes, their initial design involves pre-selection of some empirical formulae for calculation of flow characteristics and design parameters. In this paper, accuracy of several empirical formulae, proposed for calculating locations of aeration inception (LI), uniform flow (Lu) and rate of energy dissipation (ΔH/Hmax), were compared in relation to results of physical model tests of four stepped spillways and the preferred formulae, providing least amounts of relative errors, were identified. Such a feedback will be helpful for improvement of...