Loading...
Search for: submarine-geology
0.005 seconds

    A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves

    , Article Landslides ; Volume 14, Issue 1 , 2017 , Pages 203-221 ; 1612510X (ISSN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    This paper presents a new landslide-generated wave (LGW) model based on incompressible Euler equations with Savage-Hutter assumptions. A two-layer model is developed including a layer of granular-type flow beneath a layer of an inviscid fluid. Landslide is modeled as a two-phase Coulomb mixture. A well-balanced second-order finite volume formulation is applied to solve the model equations. Wet/dry transitions are treated properly using a modified non-linear method. The numerical model is validated using two sets of experimental data on subaerial and submarine LGWs. Impulsive wave characteristics and landslide deformations are estimated with a computational error less than 5 %. Then, the... 

    A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves

    , Article Landslides ; 2015 , Pages 1-19 ; 1612510X (ISSN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    This paper presents a new landslide-generated wave (LGW) model based on incompressible Euler equations with Savage-Hutter assumptions. A two-layer model is developed including a layer of granular-type flow beneath a layer of an inviscid fluid. Landslide is modeled as a two-phase Coulomb mixture. A well-balanced second-order finite volume formulation is applied to solve the model equations. Wet/dry transitions are treated properly using a modified non-linear method. The numerical model is validated using two sets of experimental data on subaerial and submarine LGWs. Impulsive wave characteristics and landslide deformations are estimated with a computational error less than 5 %. Then, the... 

    Laboratory investigations on impulsive waves caused by underwater landslide

    , Article Coastal Engineering ; Volume 55, Issue 12 , December , 2008 , Pages 989-1004 ; 03783839 (ISSN) Ataie Ashtiani, B ; Najafi Jilani, A ; Sharif University of Technology
    2008
    Abstract
    Laboratory investigations have been performed on the submarine landslide generated waves by performing 120 laboratory tests. Both rigid and deforming-slide masses are considered. The effects of bed slope angle, initial submergence, slide geometry, shape and deformation on impulse wave characteristics have been inspected. Impulse wave amplitude, period, energy and nonlinearity are studied in this work. The effects of bed slope angle on energy conversion from slide into wave are also investigated. Laboratory-based prediction equations are presented for impulse wave amplitude and period in near and far-field and are successfully verified using the available data in previous laboratory and... 

    Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges

    , Article Landslides ; Volume 13, Issue 6 , 2016 , Pages 1325-1368 ; 1612510X (ISSN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of University
    Springer Verlag 
    Abstract
    Landslide-generated waves (LGWs) are among natural hazards that have stimulated attentions and concerns of engineers and researchers during the past decades. At the same period, the application of numerical modeling has been progressively increased to assess, control, and manage the risks of such hazards. This paper represents an overview of numerical studies on LGWs to explore associated recent advances and future challenges. In this review, the main landslide events followed by an LGW hazard are scrutinized. The uncertainty regarding landslide characteristics and the lack of data concerning generated tsunami properties highlights the necessity of probabilistic analysis and numerical...