Search for: sulfide
0.012 seconds
Total 253 records

    Simulation of Mild Steel Corrosion in H2S Aqueous Solution

    , M.Sc. Thesis Sharif University of Technology Fallah Mohammadi, Ehsan (Author) ; Dolati, Abolghasem (Supervisor)
    Corrosion is a main problem for oil and gas industries at refineries and petrochemical process. Presence of sulfur compounds in crude oil and creation a corrosive environment for steel structure, caused failure and unfortunate damages. H2S which present at cracking and sweetening process in sour feed obtain hydrogen atoms that can diffuse into steel structure which involve with its instruments and consequent to hydrogen damage .distribution and storage of these sour environments can be done by high strength low alloy steel (HSLA).Electrochemical hydrogen permeation test were performed to measure the hydrogen permeation current through A106/GR B pipeline steel in the electrolytes simulating... 

    H2S Gas Sensing Characterization of Nano-Structured SnO2-CuO Multilayer Sensor

    , M.Sc. Thesis Sharif University of Technology Salehi, Farnaz (Author) ; Ghorbani, Mohammad (Co-Advisor)
    Hydrogen sulfide, H2S, is a toxic gas and has detrimental effects on human health and the oil and gas industry. Therefore, its identification is very important. According to the devastating effects of this gas, then, the general mechanisms have been studied for gas detection. In addition, by highlighting the benefits of the multilayer nanostructure electrochemical sensors, an applicable and efficient method for the industrial production of these sensors has been investigated. In this regard, the sol-gel method is used to prepare the SnO2-CuO multilayer thin film and the advantages of this method was compared to PVD method. Also sensor properties of both deposition methods have been... 

    The investigation of Odor Producing Factors in Kish Island Refineries and Sewage Collection System

    , M.Sc. Thesis Sharif University of Technology Jamali, Hamid Reza (Author) ; Hashemian, Jamal (Supervisor)
    From the main factors causing an unpleasant odor can refer to indoles, askatels, mercaptans, some volatile organic compounds, sulfide hydrogen, ammonia, and the number of odor-causing compounds, which are also found in the wastewater facilities and sometimes produce unpleasant odors. Meanwhile, ammonia (Pungent and irritating odor) and sulfide hydrogen (colorless poisonous gas with the odor of rotten eggs) can be presented as major factors in sewage odor.
    Several factors are involved in the foul-smelling hydrogen sulfide gas collection system and wastewater treatment. A few of them include numerous sewage pumping stations, selected the appropriate gradient in the collection system,... 

    Using of SnS2 Nanostructured Layer as an Electron Transport Layer in the Perovskite Solar Cells

    , Ph.D. Dissertation Sharif University of Technology Haghighi, Maryam (Author) ; Mahdavi, Mohammad (Supervisor) ; Taghavinia, Nima (Supervisor) ; Mohammadpour, Raheleh (Co-Supervisor)
    In this research, we focus on study and investigation of the role of Tin(IV) Sulfide (SnS2) nanostructured layer as electron transport layer in perovskite and chalcogenide thin film solar cells. For this purpose, SnS2 powder was prepared through hydro/solvo-thermal method, utilizing different ratios of water and ethanol as solvent and various sulfur sources (thioacetamide and thiourea). Afterwards, different solvents were investigated to achieve a stable ink (about one month) with uniform dispersion. After determining the appropriate ink and powder, thin films of SnS2 were prepared employing spin coating, spray pirolysis and laser pulsed deposition (PLD) methods and characterized. With each... 

    Modeling for Sensing Behavior of SnO2-CuO Nanostructures toward H2S Gas

    , Ph.D. Dissertation Sharif University of Technology Boroun, Zhoubin (Author) ; Ghorbani, Mohammad (Supervisor) ; Moosavi, Ali (Supervisor) ; Mohammadpour, Raheleh (Supervisor)
    H2S is a toxic and corrosive gas which is detrimental for both human’s health and some of important industries such as oil and gas. Based on different experimental research among various systems, resistive sensors fabricated from SnO2-CuO nanostructures have promising performance toward detection of this gas. High sensitivity and selectivity, response time of order of seconds, recovery times of order of tens of seconds and determining concentration of H2S gas below ppm level are advantages of this system. Unfortunately due to lack of a theoretical model, current experimental researches are excessively based on “trial and error” methodology. In this research some of the basic questions which... 

    Safety Assessment for H2S Releasing in Arak Heavy Water Factory (GS(03) Plant) Using Probabilistic Safety Assessment Method (PSA)

    , M.Sc. Thesis Sharif University of Technology Maddahzadeh Zoghi, Alireza (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    In general, release of hazardous gas in chemical process plants could be due to two reasons. First is failures due to degradation of components that have inventory of hazardous gas in standard process conditions, and the second is deviation of system from standard process conditions because of different failure modes of related components, e.g. controller equipments. The purpose of this study is, calculating the probability of H2S releasing in GS(03) plant of Arak Heavy Water factory, using PSA methods and its risk assessment. At First, fifteen groups of initiating events were identified with Hazop study for desired system. Then, for calculating the frequency of each event, the combination... 

    Investigation the Effect of Formamidinium Lead Halide on the Stability and Performance of Graphene Phototransistors Based on Lead Sulfide

    , Ph.D. Dissertation Sharif University of Technology Aynehband, Samaneh (Author) ; Simchi, Abdolreza (Supervisor)
    Enhancing the detection range, sensitivity and stability of phototdetectors due to their vast applications are in great importance. In recent years, Lead sulfide quantum dots, in order to their absorption over a wide range of wavelengths including Near-infrared (NIR), multiple exciton generation effect and solution processability are promising materials.However, long organic surface ligands which are necessary in synthesis process can suppress the carrie transport and the common method to overcome this weakness, is ligand exchange process. In this way, using short organic ligands because of their low electron mobility and methylammonium lead iodide ligands in order to their instability,... 

    Manipulation of Two-Dimensional Nanosheets Tin Sulfide by Solvothermal Process

    , M.Sc. Thesis Sharif University of Technology Mansouri, Iman (Author) ; Ghorbani, Mohammad (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
    Tin sulfide with an energy gap of about 1.1 ev is a semiconductor suitable for applications such as solar cells, lithium-ion batteries, photocatalysts and other semiconductor-based devices. There are several methods for synthesizing this semiconductor at the nanometer scale, among which the solvothermal method is an efficient, controllable and inexpensive method. By precisely controlling the parameters of this process, two-dimensional tin sulfide nanosheets with high purity and desirable morphology can be produced. In this research, tin sulfide has been synthesized by solvothermal / hydrothermal chemical method and its metallurgical properties have been studied. Effect of solvothermal... 

    Formulation and Prodution of Organometal-halide Provskite Cells to Increase Solar Cells Efficieny

    , M.Sc. Thesis Sharif University of Technology Attari Navab, Arvin (Author) ; Nemati, Ali (Supervisor)
    Today organometallic perovskites are very important in fabrication of solar cells. This materials have advantages like high mobility of charge carriers, changing in range of light aborption with changing in structures atoms, having longer charge carrier diffusion lengths than other materials, high stability and efficiency, Low-cost fabrication process, having capability of studying and processing in low temperatures and having flexibility because of Weak chemical bond in perovskite structure. Due to the low stability and rapid decomposition of this material with the presence of light and moisture, in this study has tried to use PbS quantum dots which is used in sensitive dye solar cells as... 

    Hybrid Lead sulfide-graphene Quantum Dots: Optoelectronic Properties and Cytotoxicity Evaluation

    , M.Sc. Thesis Sharif University of Technology Ayoubi, Mahdi (Author) ; Simchi, Abdolreza (Supervisor)
    In recent years, quantum dots specially NIR QDs like lead sulfide have attracted a lot of attentions in various bioapplications such as bioimaging, stem cell tracking, etc. However, these materials are generally synthesized by using organic lagands like oleic acid which is not appropriate for bioapplications. Moreover, the cytotoxicity of these materials have severely restricted their applications. In this research, lead sulfide quantum dots were synthesized via a hot injection route. The nanocrystals had an average size of 3 nm passivated with oleic acid ligands and graphene nanosheets. Excitonic and photoluminescence peaks were observed in wavelengths of 950 and 1100 nm, respectively.... 

    Study of Effective Parameters on Roasting of Zinc Sulphide in a Fluidized Bed Reactor

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Soheil (Author) ; Halali, Mohammad (Supervisor)
    In this study, four parameters were investigated including temperature, inlet flow rate, gas composition (oxygen) and particle size on the roasting of Bama company zinc sulfide concentrate in Fluidized bed reactor. Initially, primary sample was heated in electric furnace at 125℃ for 24 hours until the moisture content dried. Then roasting operation was done at 700 and 900℃. The operation was carried out on three range of particle size including 300-500, 500-700 and 700-1000 microns and flow rate was greater than the minimum flow rate of Fluencing. To investigate the effect of flow rate and gas composition input, 500-700 micron particle size range was selected. The effect of 155, 172 and 188... 

    Study of CdS thin Film Deposition on Single Layer Grapheme using Close Space Sublimation and SILAR Methods

    , M.Sc. Thesis Sharif University of Technology Bagheripour, Amir Hossein (Author) ; Asgari, Sirous (Supervisor)
    Cadmium sulfide (CdS) thin films were successfully fabricated in argon atmosphere on glass slides and Single Layer Graphene(SLG)/Cu foil stack by close space sublimation technique in three different deposition temperatures. Successive Ionic Layer Adsorption and Reaction (SILAR) technique is used as a complementary technique for better and denser layers. Analysis techniques such as Grazing Incident X-ray Diffraction (GIXRD) and Scanning Electron Microscope images were used for structural study of the deposited layers. Polycrystallinity and hexagonal wurtzite structure of the thin films is confirmed. For band gap calculations and for determination of optical behavior of the layers in different... 

    Creating a Protective Coating Against Corrosion and Erosion on the Surface of the Parts using in Sour Environments

    , M.Sc. Thesis Sharif University of Technology Ghasemi Tabasi, Hossein (Author) ; Kokabi, Amir Hossein (Supervisor)
    A concern in the production sour oil and gas is the corrosion caused by the acid gas H2S. Even though corrosion resistant alloys (CRA) have long been available as a material selection option that mitigates H2S corrosion, the carbon steel is in general more cost-effective for oil and gas facilities. The aim of this study is to investigate the mechanical properties of 410NiMo cladding on a low alloy steel substrate. In this investigation, two successive layers of ER410NiMo were clad on low alloy steel substrates. To reduce the likelihood of Hydrogen Induced Cracking (HIC) and producing stable hydrogen traps, Post Weld Heat Treatment (PWHT) was used. To characterize the mechanical properties of... 

    Surface Passivation of PbS Colloidal Quantum Dots for Photovoltaic Applications

    , Ph.D. Dissertation Sharif University of Technology Tavakkoli, Mohammad Mahdi (Author) ; Simchi, Abdolreza (Supervisor) ; Ashuri, Hossein (Supervisor)
    Solution-processed quantum dots (QDs) have attracted significant attention for the low-cost fabrication of optoelectronic devices. Here, we synthesized PbS QDs via hot injection method and passivated the trap states by using short thiols and dopant elements for photovoltaic application. In order to study the effect of dopants on photovoltaic application, PbS QDs were doped by using three different cations: Cadmium, Calcium, and Zinc. The results showed that Cd dopant has a better improvement than Ca and Zn dopants in order to increase the efficiency of the PbS QDs solar cells. We achieved solar power conversion efficiencies of 5.81% using Cd therapy. Recently, hybrid nanocomposites... 

    Kinetic of Zinc Sulfide Roasting of

    , M.Sc. Thesis Sharif University of Technology Marzoughi, Omid (Author) ; Halali, Mohammad (Supervisor)
    In this study, the effect of two main parameters, time and temperature, were investigated in the roasting process of zinc sulfide of Bafgh’s mine, and kinetics and the mechanism of the roasting reaction were examined, too. The oxidation process was performed in a muffle furnace in the presence of the oxygen of air atmosphere. The raw powder material (with the particle size of 74-250 micron) was poured in Alumina crucibles. The roasting process was run in eight temperatures of 650, 700, 750, 800, 850, 900, 950 and 1000 ◦C. Oxidation percent was calculated in six times of 5, 10, 15, 30, 45 and 60 minutes. The experiments were designed in a way that the effect of each parameter could be... 

    The Effect of Cadmium, Calcium and Zinc on Optoelectronic Properties of PbS Quantum Dots

    , M.Sc. Thesis Sharif University of Technology Mirfasih, Mohammad Hassan (Author) ; Simchi, Abdolreza (Supervisor)
    In recent years, much attention has been focused on quantum dot films due to their high amount of surface area and their size-dependant band-gap tenability. However, high surface area results in increase in energy traps in case of insufficient surface passivation. In this research, PbS colloidal quantum dots were synthesized via hot injection route having the size of 3 nm approximately. Then cationic doping with Zn, Ca and Cd and ligand exchange of long oleic acid with short organic mercaptopionic acid were done. Excitonic peak of these dots and photoluminescence peak appeard in wavelengths of 930 and 1100 nm respectively. Optimum film thickness was also determined as 300 nm. Quantum dot... 

    Colloidal Synthesis of CdSe Nanoparticles and the Influence of Processing Parameters on Growth kinetics

    , M.Sc. Thesis Sharif University of Technology Mansouri, Hamid (Author) ; Asgari, Sirous (Supervisor)
    Over the past two decades, several studies have been investigated on synthesis and properties of semi-conductor quantum dots because of their applications in sensors, LEDs, detectors, solar cells, etc. One of challenging issues in synthesizing these nano-particles is their size distribution. In this study, Cadmium Selenide was synthesized by the method of colloidal synthesis. X-ray diffraction showed that the crystalline nano-particles have wurtzite structure. For obtaining a uniform size distribution, effect of various parameters such as molar ratio of components and reaction temperature on the growth kinetics of these particles, were studied. Results showed that molar ratio of Selenium to... 

    Preparation of Tthin Film CdS/CdTe Solar Cells: Containing CdS Nanowires and CdTe Particles

    , M.Sc. Thesis Sharif University of Technology Akhlaghi, Mohammad Hossein (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    In the present work, we have designed a novel CdS/CdTe solar cell based on CdS nanowires, as a window layer, and CdTe nanoparticles, as a absorber layer. CdS nanowires and CdTe nanoparticles were synthesized by solvothermal method. The samples were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscope (FE-SEM), Atomic Force Microscope (AFM) and Ultraviolet–Visible (UV–vis) spectroscopy spectrometer. Photocurrent measurements were carried out using a 150 W xenon lamp with an air-mass (AM) 1.5 filter. The performance of the solar cell based on the CdS nanowire (NW-CdS) film with 225 nm thickness and CdTe nanoparticle (NP-CdTe) film with 6 μm... 

    Investigation of Aligned Carbon Nanotubes Modified by Platinum Nanoparticles as Hydrogen Sulfide Sensor

    , M.Sc. Thesis Sharif University of Technology Salmani Rezaie, Salva (Author) ; Dolati, Abolghasem (Supervisor) ; Ghorbani, Mohamad (Supervisor)
    The present research describes sensing behavior of modified aligned carbon nanotubes toward detection of hydrogen sulfide. Aligned carbon nanotubes were grown on etched stainless steel by thermal chemical vapor deposition. Obtained CNTs have curved closed tips and bamboo like structure. Purification of carbon nanotubes were performed by electrochemical oxidation of CNTs. Potential cycling was applied on grown CNTs in different acid solutions and 0.2 M sulfuric acid was chosen to oxidize the CNTs. Carboxylic functional groups were produced by electrochemical oxidation of CNTs and can be observed in FTIR studies. These groups enhanced the electrochemical properties of electrodes and may act as... 

    Hot Workability of a Free-cutting Steel with Severe Sulfur Segregation During Continuous Casting

    , M.Sc. Thesis Sharif University of Technology Naghdy, Soroosh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Splitting in ingot cast structures and transverse cracks in continuous cast structures are the main problems of hot rolling of low carbon resulfurized free-cutting (LCRF) steels. Presence of high volume fraction of manganese sulfide inclusions in cast structure increases the risk of alligatoring in hot rolling. Because of high sulfur content of these steels and probability of formation of low melting point phases, minimum level of manganese and maximum level of copper and tin is necessary. Morphology of manganese sulfide is another important factor in hot forming of these steels, which can be controlled by level of deoxidation in steel making. In fact, MnS2 is present in fully killed...