Loading...
Search for: supercritical-water
0.011 seconds

    Non-catalytic condensation of aromatic aldehydes with aniline in high temperature water

    , Article Green Chemistry Letters and Reviews ; Volume 5, Issue 3 , Mar , 2012 , Pages 403-407 ; 17518253 (ISSN) Ahmadi, S. J ; Hosseinpour, M ; Sadjadi, S ; Sharif University of Technology
    T&F  2012
    Abstract
    The synthesis of diamino triphenyl methanes from aniline and aromatic aldehydes was conducted in near critical water and supercritical water. The reaction parameters, such as temperature, density, and reaction time, have been studied. Significant acceleration of the condensation reaction of aniline and aromatic aldehydes can be achieved by using high temperature water, especially near the critical point, in the absence of any acid catalysts. It has been demonstrated that high temperature water act effectively in the place of conventional acid catalysts  

    Synthesis of thoria nanoparticles via the hydrothermal method in supercritical condition

    , Article Materials Letters ; Volume 81 , 2012 , Pages 99-101 ; 0167577X (ISSN) Moeini, M ; Malekzadeh, A ; Ahmadi, S. J ; Hosseinpour, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Thorium dioxide (thoria) nano-particle was synthesized by employing supercritical water (SCW) as an excellent reaction environment for hydrothermal crystallization of metal oxide particles. This method is ideal for production of ultrafine powder having controlled stoichiometry, high quality, purity and crystallinity. The nano-crystalline thoria was prepared in a stainless steel (316 L) autoclave, fed with an aqueous solution of Th(NO 3) 4.5H 2O as a reactant and took place under SCW condition up to 450 °C for 45 min. The product was recovered and characterized by X-Ray Diffraction (XRD), Thermal Gravimetry Analysis (TG/DTA) and Brunauer, Emmett and Teller (BET) surface area analysis. The... 

    CuO nanoparticles: A mild and efficient reusable catalyst for the one-pot synthesis of 4-amino-5-pyrimidinecarbonitriles under aqueous conditions

    , Article Defect and Diffusion Forum ; Volume 326-328 , 2012 , Pages 372-376 ; 10120386 (ISSN) ; 9783037854006 (ISBN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Sharif University of Technology
    2012
    Abstract
    An efficient method for the synthesis of 4-amino-5-pyrimidinecarbonitriles by three-component reaction of malononitrile, aldehydes and N-unsubstituted amidines, under aqueous conditions, using CuO nanoparticles as catalyst is reported. The protocol offers advantages in terms of higher yields, short reaction times, and mild reaction conditions, with reusability of the catalyst  

    Adsorption of lead ions in aqueous solution using Yttrium oxide nanoparticles

    , Article Journal of Nano Research ; Volume 16 , 2011 , Pages 83-87 ; 16625250 (ISSN) Sadjadi, S ; Ahmadi, S. J ; Hosseinpour, M ; Sharif University of Technology
    2011
    Abstract
    By a single-step supercritical hydrothermal synthesis method, yttrium oxide nanoparticles were successfully prepared without additional treatment. Yttrium oxide nanoparticles were employed as an adsorbent to study the adsorption of some heavy metal ions. This study revealed that nano structure yttrium oxide was an effective adsorbent for removal of lead ions from aqueous solutions  

    Supercritical gasification of biomass: Thermodynamics analysis with Gibbs free energy minimization

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 34, Issue 2 , Dec , 2011 , Pages 163-176 ; 15567036 (ISSN) Hemmati, Sh ; Pazuki, G. R ; Vossoughi, M ; Saboohi, Y ; Hashemi, N ; Sharif University of Technology
    2011
    Abstract
    Gasification of biomass in supercritical water is a successful technology for hydrogen production especially by using wet biomass. The whole process, from feeding to purification of hydrogen, consists of a lot of equipment, such as pumps, heat exchangers, heaters, reactors, etc. Because the main reactions take place in the gasification reactor, the gasifier is the most important equipment of the process. In this article, a thermodynamic model, including chemical equilibrium in the reactor that is based on Gibbs free energy minimization, is developed to estimate equilibrium composition for gasification of biomass in supercritical water for hydrogen production. For this analysis, we use three... 

    A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads

    , Article Particuology ; Volume 9, Issue 5 , 2011 , Pages 480-485 ; 16742001 (ISSN) Ahmadi, S. J ; Outokesh, M ; Hosseinpour, M ; Mousavand, T ; Sharif University of Technology
    Abstract
    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure. In the first step, copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition. Then, they were immobilized in the polymeric matrix of calcium alginate, and followed by high-temperature calcination in an air stream as the third step, in which carbonaceous materials were oxidized, to result in a pebble-type catalyst of high porosity. The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm, X-ray diffractometry (XRD), and thermo... 

    Study of Mechanism of Formation of Metal Oxide Nanoparticles in Supercritical Water Medium

    , M.Sc. Thesis Sharif University of Technology Akhlaghpasand, Hamze (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Co-Advisor)
    Abstract
    One of the most convenient methods for the synthesis of metal oxide nanoparticles, inorganic ceramic materials and catalysts is supercritical hydrothermal method. In its pure form or mixed metal oxide nanoparticles have potential applications are wide. An important aspect of functional metal oxides of uranium dioxide as the selective catalyst for the conversion of methane to methanol and chlorinated organic matter decomposition is used. The main issue that led to the definition of this project was that nanoparticles synthesized with supercritical hydrothermal conditions influenced by change in the temperature. Temperature also affects the particle size and the conversion efficiency. This... 

    Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide nanoparticles under supercritical water condition

    , Article Journal of Supercritical Fluids ; Volume 52, Issue 3 , 2010 , Pages 292-297 ; 08968446 (ISSN) Jafari Nejad, Sh ; Abolghasemi, H ; Moosavian, M. A ; Golzary, A ; Ghannadi Maragheh, M ; Sharif University of Technology
    2010
    Abstract
    In this research, synthesis of lanthanum oxide nanoparticles using supercritical water as a reaction medium in batch type reactor was studied. The crystallographic identity and morphology of the synthesized nanoparticles were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns indicate that the well-crystallized lanthanum oxide nanocrystals can be easily obtained under the current synthetic conditions. The effect of four parameters includes temperature, reaction time; primary concentration of aqueous solution of lanthanum (III) nitrate and pH of starting solution on reaction efficiency, particle size and the BET surface area were investigated... 

    Hydrogen-deuterium chemical exchange in supercritical water: Thermodynamic considerations for optimizing the synthesis of high degree deuterated benzene

    , Article Journal of Supercritical Fluids ; Volume 125 , 2017 , Pages 96-103 ; 08968446 (ISSN) Sadjadi, S ; Hosseinpour, M ; Mohammadnezhad, F ; Ahmadi, S. J ; Khazayi, M. A ; Sharif University of Technology
    Abstract
    In the light of the novel physical-chemical properties of supercritical water as a green reaction medium, we studied the synthesis of deuterated benzene in supercritical heavy water, in the presence of sodium deutroxide, as a catalyst. The effects of operational parameters including temperature, time, pressure (density), catalyst amount and benzene/D2O volumetric ratio on the degree of deuteriation (D%) and deuterated benzene yield were investigated extensively and the conditions for the highest degree of deuteration and product yield, were optimized. Furthermore, because of the importance of the pressure of solution inside the reaction medium on the H/D exchange process as well as the... 

    Thermal–hydraulic analysis of nanofluids as the coolant in supercritical water reactors

    , Article Journal of Supercritical Fluids ; Volume 128 , 2017 , Pages 47-56 ; 08968446 (ISSN) Rahimi, M. H ; Jahanfarnia, G ; Vosoughi, N ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Supercritical water reactor is one of the generation IV reactors which is basically a creative mixture of conventional PWRs and supercritical pressure steam boilers. Application of nanoparticles provides an effective way of improving heat transfer characteristics of conventional coolants; thus, utilization of a nanofluid coolant in the conceptual design of this reactors is quite reasonable and inevitable. Reactor coolant at supercritical pressure dose not experience any phase change and is heated up to 500 °C in three pass core design. In this paper, thermal–hydraulic analysis of applying a water base Al2O3 nanofluid with different nanoparticle mass fractions were investigated using a porous... 

    On the catalysis capability of transition metal oxide nanoparticles in upgrading of heavy petroleum residue by supercritical water

    , Article Journal of Supercritical Fluids ; Volume 126 , 2017 , Pages 14-24 ; 08968446 (ISSN) Kosari, M ; Golmohammadi, M ; Ahmadi, S. J ; Towfighi, J ; Heidari Chenari, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Vacuum residue cracking has been successfully conducted under supercritical water condition in presence of various metal oxide nanocalysts, namely NiO, CuO, ZnO, Co2O3, and Cr2O3 synthesized at supercritical water. The cracking experiments were carried out at 450 °C. Three species of cracking: maltene, asphaltene, and coke were then weighed and their corresponding speciation was defined. Gas chromatography-mass spectrometry (GC–MS), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), and elemental analysis (CHNS) tests were utilized to prove the performance of upgrading reactions. It was revealed that NiO showed the best performance among other catalyst, in which... 

    Decomposition of tributhyl phosphate at supercritical water oxidation conditions: Non-catalytic, catalytic, and kinetic reaction studies

    , Article Journal of Supercritical Fluids ; Volume 133 , 2018 , Pages 103-113 ; 08968446 (ISSN) Kosari, M ; Golmohammadi, M ; Towfighi, J ; Ahmadi, S. J ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Tributhyl phosphate (TBP) decomposition in supercritical water oxidation (SCWO) was performed with and without catalyst, at different temperatures ranging from 370 to 480 °C, and different reaction times. Ag2O, CuO, Fe2O3, MgO, and ZnO synthesized by supercritical water were examined in TBP decomposition as the catalyst. TBP structure decomposed under the non-catalytic reaction; nevertheless, the results indicated that the use of catalysts improved the reaction efficiency, which calculated based on total organic carbon (TOC) removal, by far. However, TOC removal using Fe2O3 was 20% higher than the non-catalytic reaction. Having the ability in completion of the redox cycle, iron oxide... 

    Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues

    , Article Carbon ; Volume 130 , April , 2018 , Pages 267-272 ; 00086223 (ISSN) Tayyebi, A ; Akhavan, O ; Lee, B. K ; Outokesh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Supercritical water was used for simultaneous fragmentation and reduction of graphene oxide (GO) sheets into water-dispersible graphene quantum dots (GQDs) with tunable sizes. Transmission electron microscopy (TEM) demonstrated that by increasing the temperature above the critical point of water, the average size and thickness of the GQDs were decreased and the size uniformity and production yield were increased. The results of thermal conductivity measurement of GQD nanofluids with different weight fractions indicated that the GQDs prepared at supercritical condition could enhance the thermal conductivity of water by 65% as compared to 35% for the GQDs synthesized at sub-critical... 

    Study on Pretreatment of the Uranous Effluents of the UCF & Natanz Plants by Using Supercritical Water Method

    , M.Sc. Thesis Sharif University of Technology Salimi, Ali Akbar (Author) ; Otoukesh, Mohammad (Supervisor) ; Ahmadi, Javad (Co-Advisor)
    Abstract
    Pretreatment of nuclear waste for valuable and limited uranium resources in the nuclear industry as well as environmental protection is imperative. Wash the affected parts of the Natanz uranium enrichment plant uranium centrifuges with a standard cleaning solution of citric acid, a liquid waste is generated in this study, the preparation of these residues using supercritical water oxidation (SCWO) and near critical (HTWO1) was studied as a result, the optimum operating conditions, and conditions of solvent extraction has been studied. In the result, the optimum operating conditions, and conditions of solvent extraction has been introduced. Also in the UCF2 as a liquid waste contaminated with... 

    Experimental Study on Recycling of Used (Waste)Motor Oils Supercritical Water Gasification

    , M.Sc. Thesis Sharif University of Technology Ghanbarzadeh, Shabnam (Author) ; Rajabi, Abbas (Supervisor) ; Tavakoli, Omid (Supervisor)
    Abstract
    The purpose of this study was to investigate experimentally and modeling the process of gasification with supercritical water using waste motor oil. The effect of four important and influential parameters on the process, Temperature (350-450° C), Reaction time (15-45 minutes), Oil-to-Water volume ratio (0.2-0.4) and type of catalyst Consumption (Ni- NaOH- Na2CO3) was evaluated. Experimental experiments were designed and performed on the Design Expert software. The experimental results showed that the purity of hydrogen in the gas stream is more dependent on the temperature parameter and the higher purity is obtained with increasing temperature. Subsequently, as the oil concentration...