Loading...
Search for: surface-activities
0.016 seconds
Total 162 records

    A machine learning framework for predicting entrapment efficiency in niosomal particles

    , Article International Journal of Pharmaceutics ; Volume 627 , 2022 ; 03785173 (ISSN) Kashani Asadi Jafari, F ; Aftab, A ; Ghaemmaghami, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Niosomes are vesicles formed mostly by nonionic surfactant and cholesterol incorporation as an excipient. The drug entrapment efficiency of niosomal vesicles is particularly important and depends on many parameters. Changing the effective parameters to have maximum entrapment efficiency in the laboratory is time-consuming and costly. In this study, a machine learning framework was proposed to address these problems. In order to find the most critical parameter affecting the entrapment efficiency and its optimal value in a specific experiment, data were first extracted from articles of the last decade using keywords of niosome and thin-film hydration method. Then, deep neural network (DNN),... 

    Niosomal formulation for antibacterial applications

    , Article Journal of Drug Targeting ; Volume 30, Issue 5 , 2022 , Pages 476-493 ; 1061186X (ISSN) Mehrarya, M ; Gharehchelou, B ; Haghighi Poodeh, S ; Jamshidifar, E ; Karimifard, S ; Farasati Far, B ; Akbarzadeh, I ; Seifalian, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Infection is a disease that is mainly caused by different Gram-negative and Gram-positive bacteria. Treatment of infections requires a considerable amount of antibiotics, which can cause serious damage to the patient's body. Delivering the antibiotic only to the site of infection can prevent these destructive effects, such as the destruction of the normal intestinal flora. The drug delivery system through carriers will take antibiotics into a part of the body involved in the disease. Niosome nanoparticles, which have been made from non-ionic surfactants, have been emerging as ideal drug/antibiotics delivery vehicles. Recently, niosome formulations have been targeted to reduce toxicity and... 

    Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations

    , Article Chemosphere ; Volume 289 , 2022 ; 00456535 (ISSN) Ramezanzadeh, M ; Aminnaji, M ; Rezanezhad, F ; Ghazanfari, M. H ; Babaei, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the dissolution and mobilization of non-aqueous phase liquid (NAPL) blobs in the Surfactant-Enhanced Aquifer Remediation (SEAR) process were upscaled using dynamic pore network modeling (PNM) of three-dimensional and unstructured networks. We considered corner flow and micro-flow mechanisms including snap-off and piston-like movement for two-phase flow. Moreover, NAPL entrapment and remobilization were evaluated using force analysis to develop the capillary desaturation curve (CDC) and predict the onset of remobilization. The corner diffusion mechanism was also applied in the modeling of interphase mass transfer to represent NAPL dissolution as the dominant mass transfer... 

    Interplay between morphology and band gap energy in Fe-MIL-88A prepared via a high temperature surfactant-assisted solvothermal method

    , Article Materials Chemistry and Physics ; Volume 277 , 2022 ; 02540584 (ISSN) Bagherzadeh, E ; Zebarjad, S. M ; Madaah Hosseini, H. R ; Khodaei, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-Organic Frameworks (MOFs) are a new class of crystalline microporous solids with superior properties compared to their inorganic counterparts that offer a great variety of properties. Fe-MIL-88A is a biocompatible MOF with a flexible structure that can be synthesized in various morphologies via different chemical methods. The present study proposes two efficient methods, namely, microemulsion and surfactant-assisted solvothermal method, to prepare Fe-MIL-88A nanorods with narrow size distribution and well-defined morphology. The morphology, crystalline and chemical structure of the prepared samples were studied using FESEM images, XRD patterns and FTIR spectra, respectively, and their... 

    Azo dye removal via surfactant-assisted polyvinylidene fluoride membrane

    , Article Environmental Health Engineering and Management ; Volume 8, Issue 1 , 2021 , Pages 25-32 ; 24233765 (ISSN) Darbandi, F ; Mousavi, A ; Bagheri Lotfabad, T ; Heydarinasab, A ; Yaghmaei, S ; Sharif University of Technology
    Kerman University of Medical Sciences  2021
    Abstract
    Background: Recently, concerns have been raised regarding the environmental and public health safety of azo dyes, the most widely used synthetic dyes. The membrane technique has been introduced as one of the efficient methods for dye removal treatments. Polyvinylidene fluoride (PVDF) membrane manipulated by surfactants was studied for removal of the azo dye, carmoisine. Methods: PVDF membrane was prepared via non-solvent-induced phase separation (NIPS) and used to remove the azo dye, carmoisine. Three nonionic surfactants including Tween 20, Tween 60, and Tween 80 were used individually as additives in casting solutions to improve PVDF membrane properties. Results: Fourier-transform infrared... 

    The effect of polymeric surfactant content on the mechanical properties of Al/GNP nanocomposites

    , Article Materials Chemistry and Physics ; Volume 257 , 2021 ; 02540584 (ISSN) Moradi, M ; Abouchenari, A ; Pudine, M ; Sharifianjazi, F ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Graphene nanoplatelets (GNPs) are ideal reinforcements for improving the mechanical properties of aluminum-based matrices due to their outstanding properties. However, it essentially depends on their uniform dispersion in the matrix. In this study, the challenge of uniform dispersion of graphene was performed by functionalizing the non-covalent surface and sonication of GNPs applying non-ionic polymeric ethyl cellulose (EC) surfactant, in which a colloidal mixture was provided with Al powder and graphene, followed by sintering at 620 °C and consolidation. The density and mechanical properties of nanocomposite specimens were investigated and compared with a non-surfactant-assisted Al/GNP... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of... 

    Experimental investigation and mathematical modeling of oil/water emulsion separation effectiveness containing alkali-surfactant-polymer

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 9 , 2021 , Pages 1286-1298 ; 01932691 (ISSN) Aleem, W ; Mellon, N ; Khan, J. A ; Al-Kayiem, H. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Alkalis, surfactants and/or polymers are usually injected in the injector wells so that the injection fluids can sweep through the reservoir and mobilize/recover more oil. However, the formation of stable emulsion due to the residual chemicals in the recovered crude oil poses problems in the primary separation process. This study focuses on the effect of Alkali-Surfactant-Polymer injection on creaming and coalescence of crude oil and water emulsion produced in the primary gravity separator. In addition, a model is developed in this work to predict the separation effectiveness of oil and water emulsion containing ASP. In this work, the effect of ASP on the stability and the separation of... 

    Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 4 , Augus , 2021 ; 22133437 (ISSN) Idrees, A ; Shan, A ; Ali, M ; Abbas, Z ; Shahzad, T ; Hussain, S ; Mahmood, F ; Farooq, U ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Polyvinylpyrrolidone coated nano zero valent iron-copper (PVP-nZVI-Cu) bimetallic nanoparticles were successfully synthesized for dechlorination of trichloroethylene (TCE) into non-toxic byproducts in the presence of persulfate oxidant. The average size of PVP-nZVI-Cu nanoparticles (3-25 nm) was smaller than PVP-nZVI (25-60 nm) and nZVI (50-90 nm) particles due to PVP role in the prevention of iron aggregation and agglomerations. The synthesized PVP-nZVI-Cu nanoparticles were used as an efficient persulfate (PS) activator to generate reactive oxygen species (ROSs) for the degradation of TCE. The complete removal of TCE (99.6%) was achieved in the presence of 0.4 g/L of PVP-nZVI-Cu... 

    A mechanistic study of emulsion flooding for mobility control in the presence of fatty acids: Effect of chain length

    , Article Fuel ; Volume 276 , 2020 Alizadeh, S ; Suleymani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Emulsion flooding is a promising method for enhanced oil recovery (EOR). The static and dynamic behavior of the emulsions is greatly influenced by the nature of the applied surfactant. In this work, the effect of fatty acids, as natural surface-active agents, and their chain length on the emulsion behavior was investigated in both bulk and porous media. A panel of the fatty acids with different chain lengths (6 < C < 18) was applied at constant concentration and pH. Upon the static stability tests, emulsion stability at the optimum value of chain length (C14) was increased by two orders of magnitude. Under the optimal condition, the hydrogen bonding between dissociated and undissociated... 

    A note on the synergistic effect of surfactants and nanoparticles on rising bubble hydrodynamics

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 155 , 2020 Fayzi, P ; Bastani, D ; Lotfi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Various mixtures of surfactants and nanosilica particles were investigated to assess their influence on rising bubble hydrodynamics. For this purpose, local velocities of rising bubbles were measured experimentally. Also, the effects of concentration of three types of surface-modified silica nanoparticles on density, viscosity, and surface tension of surfactant solutions were determined. Experimental results revealed that the simultaneous presence of nanoparticles and surfactant molecules led to the decrease of local velocities of rising bubbles. The presence of nanoparticles in surfactant solutions leads to a more reduction of bubble local velocity. This could be caused by the formation of... 

    Investigation and visualization of surfactant effect on flow pattern and performance of pulsating heat pipe

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 139, Issue 3 , 2020 , Pages 2099-2107 Gandomkar, A ; Kalan, K ; Vandadi, M ; Shafii, M. B ; Saidi, M. H ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    Pulsating heat pipes (PHPs) are one of the new devices used for cooling in several applications such as electronic and aerospace systems. Their low cost, effectiveness at various conditions, being equipped for passive energy conversion, and well distribution of temperature compared to conventional heat pipes are among the reasons of their popularity. To investigate the effect of surface tension of the working fluid on the behavior of PHPs, a copper heat pipe is fabricated with inner and outer diameters of 2 mm and 4 mm, respectively. Five different concentrations of cetrimonium bromide (C-Tab) surfactant are dissolved in water and are tested with a filling ratio of 50% (± 1%). A piece of... 

    The stability and surface activity of environmentally responsive surface-modified silica nanoparticles: the importance of hydrophobicity

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 9 , 2020 , Pages 1299-1310 Ghaleh, V.R ; Mohammadi, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, the effect of hydrophobicity of environmentally responsive surface-modified silica nanoparticles on the stability and surface activity of the nanoparticles is examined. To this end, n-propyl, n-hexyl, or n-octyl chains and methoxy poly(ethylene glycol) chains at various quantities were coated covalently on the surface of silica nanoparticles to regulate the hydrophobicity of the responsive nanoparticles. Various experimental tools such as stability analysis, interfacial-tension and contact-angle measurements, and emulsion formation were performed to investigate the effect of hydrophobicity. It became evident that the presence of the hydrophobic agents influences considerably... 

    Microorganisms’ effect on the wettability of carbonate oil-wet surfaces: implications for MEOR, smart water injection and reservoir souring mitigation strategies

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 10, Issue 4 , 2020 , Pages 1539-1550 Jahanbani Veshareh, M ; Ayatollahi, S ; Sharif University of Technology
    Springer  2020
    Abstract
    In upstream oil industry, microorganisms arise some opportunities and challenges. They can increase oil recovery through microbial enhanced oil recovery (MEOR) mechanisms, or they can increase production costs and risks through reservoir souring process due to H2S gas production. MEOR is mostly known by bioproducts such as biosurfactant or processes such as bioclogging or biodegradation. On the other hand, when it comes to treatment of reservoir souring, the only objective is to inhibit reservoir souring. These perceptions are mainly because decision makers are not aware of the effect microorganisms’ cell can individually have on the wettability. In this work, we study the individual effect... 

    Effect of salts and their interaction with ingenious surfactants on the interfacial tension of crude oil/ionic solution

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 1 , January , 2020 , Pages 224-235 Lashkarbolooki, M ; Parvizi, R ; Ayatollahi, S ; Ghaseminejad Raeeni, E ; Sharif University of Technology
    Chemical Industry Press  2020
    Abstract
    Understanding the roles of asphaltene and resin as natural surfactants existed in crude oil can enlighten contradicting reported results regarding interfacial tension (IFT) of crude oil/aqueous solution as a function of salinity and ion type. In this way, this study is aimed to investigate the effect of these natural surface active agents on IFT of with special focus on SO42− anion and Mg2+ cation. Two different synthetic oil solutions of 8 wt% of the extracted asphaltene and resin dissolved in toluene are prepared, and then IFT values are measured. After that, the obtained results are compared with the IFT of intact crude oil in contact with the same saline solutions examined in the... 

    Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: experimental data and empirical models

    , Article Environmental Science and Pollution Research ; Volume 27, Issue 3 , 2020 , Pages 2658-2669 Ramezanzadeh, M ; Khasi, S ; Fatemi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Springer  2020
    Abstract
    The remediation of nonaqueous phase liquids (NAPLs) enhanced by surfactant and nanoparticles (NP) has been investigated in numerous studies. However, the role of NP-assisted surfactants in the dissolution process is still not well discussed. Besides, there is a lack of empirical dissolution models considering the effects of initial residual saturation Strap, NAPL distribution, and surfactant concentration in NAPL-aqueous phase systems. In this work, micromodel experiments are conducted to quantify mass transfer coefficients for different injected aqueous phases including deionized water, SDS surfactant solutions, and NP-assisted solutions with different levels of concentrations and flow... 

    Photovoltaic performance and electrochemical impedance spectroscopy analysis of CdS/CdSe-sensitized solar cell based on surfactant-modified ZnS treatment

    , Article Applied Physics A: Materials Science and Processing ; Volume 126, Issue 6 , 2020 Samadpour, M ; Dehghani, M ; Parand, P ; Natagh Najafi, M ; Parvazian, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Among the various approaches, ZnS treatment is the most convenient method for reducing the charge recombination in quantum dot-sensitized solar cells (QDSSCs). Here an improved method of ZnS treatment is explained for efficiency enhancement in QDSSCs. To get to the goal of device performance improvement, it is essential to have a uniform deposited layer. We utilized Triton X-100 (TX-100) as a surfactant to the convenient aqueous precursors during ZnS deposition by successive ionic layer adsorption and reaction method. It helps to decrease in contact angle and increase in wettability of the aqueous precursor and results in a more uniform deposited layer. The effect of modified ZnS treatment... 

    Relative permeability measurement in carbonate rocks, the effects of conventional surfactants vs. Ionic liquid-based surfactants

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 12 , 2020 , Pages 1797-1811 Zabihi, S ; Faraji, D ; Rahnama, Y ; Zeinolabedini Hezave, A ; Ayatollahi, S ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    In the present study, the effect of two different kinds of surfactants namely conventional (Sodium dodecyl benzene sulfonate (SDBS)) and ionic liquid (IL)-based surfactants are investigated on the tertiary oil recovery using relative permeability concept. In this way, besides the Amott wettability index measurement, unsteady state core flooding tests are performed to not only find the effect of surfactant injection on tertiary oil recovery, but also to investigate their effects on relative permeability of carbonate rocks. In addition, for more reliable conclusions regarding the possible mechanisms, interfacial tension (IFT), compatibility and emulsification tests are carried out as a... 

    Photovoltaic performance improvement in vacuum-assisted meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering

    , Article ACS Applied Energy Materials ; Volume 2, Issue 9 , 2019 , Pages 6209-6217 ; 25740962 (ISSN) Parvazian, E ; Abdollah Zadeh, A ; Dehghani, M ; Taghavinia, N ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Scalable coating methods have recently emerged as practical alternative deposition techniques to the conventional spin-coating despite their lower yielding power conversion efficiencies (PCEs). The most important barrier acting against the use of scalable deposition methods to get a highly absorbing (>95%) film with controlled morphology in the high crystallinity of perovskite particles is the impossibility of antisolvent dripping during the deposition. Here, we demonstrate the positive role of both the surfactant-engineering and the vacuum-annealing (<100 Pa) process in improving the device performance to overcome this limit. A detailed optimization of the vacuum-assisted meniscus printing... 

    An experimental investigation of nanoemulsion enhanced oil recovery: Use of unconsolidated porous systems

    , Article Fuel ; Volume 251 , 2019 , Pages 754-762 ; 00162361 (ISSN) Jalilian, M ; Tabzar, A ; Ghasemi, V ; Mohammadzadeh, O ; Pourafshary, P ; Rezaei, N ; Zendehboudi, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Utilization of nanoparticles in oil and gas industry has attracted considerable attention of engineers and researchers. In this article, the feasibility of nanoemulsion flooding is investigated as a method for Enhanced Oil Recovery (EOR) through coreflooding experiments, using a packed bed and real reservoir fluids. Nine different mixtures of the solvent, surfactant, and nanoparticles in the form of a nanoemulsion phase are generated and used to recover the oil in the context of an EOR process. Various tests are conducted to determine the properties of porous medium and fluids. To study the production performance of this EOR technique, pressure drop across the packed bed are measured, along...