Loading...
Search for: surface-treatment
0.008 seconds
Total 75 records

    The effect of multiple surface treatments on biological properties of Ti-6Al-4V alloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 10 , 2014 , p. 4588-4593 Parsikia, F ; Amini, P ; Asgari, S ; Sharif University of Technology
    Abstract
    In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface... 

    The effects of combination of severe plastic deformation and Shot Peening surface treatment on fatigue behavior of 6082 aluminum alloy

    , Article Russian Journal of Non-Ferrous Metals ; Volume 56, Issue 2 , 2015 , Pages 206-211 ; 10678212 (ISSN) Mohammadi, S ; Irani, M ; Karimi Taheri, A ; Sharif University of Technology
    Abstract
    In this paper, the effects of Equal Channel Angular Pressing process (ECAP) followed by Shot Peening process (SP) on the fatigue properties of 6082 aluminum alloy are investigated. Several samples of the alloy are ECAPed and SPed and then their mechanical behavior are characterized using tensile, micro-hardness, and fatigue tests. The results indicate that shot peening and then polishing the specimen after one-pass ECAP is an effective method to improve the fatigue life of the alloy. Moreover, by increasing the number of ECAP passes before shot peening, a local work softening occurs at the subsurface layer, leading to a significant decrease in the fatigue life of the alloy. The results of... 

    Energy aspects and workpiece surface characteristics in ultrasonic-assisted cylindrical grinding of alumina-zirconia ceramics

    , Article International Journal of Machine Tools and Manufacture ; Volume 90 , 2015 , Pages 16-28 ; 08906955 (ISSN) Zahedi, A ; Tawakoli, T ; Akbari, J ; Sharif University of Technology
    Abstract
    Ultrasonic assisted grinding is a novel method for improving the grinding process of difficult-to-cut materials. In the present research a novel setup has been designed and manufactured for utilizing ultrasonic vibrations in external cylindrical grinding. The designed ultrasonic head vibrates a rotating workpiece in axial direction. An alumina-zirconia ceramic (AZ90) has been selected as the workpiece material. Energy aspects and workpiece surface characteristics of ultrasonic assisted cylindrical grinding (UACG) and conventional cylindrical grinding (CG) processes have been analytically modeled and corresponding grinding experiments have been performed. The combined kinematics of the... 

    Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties

    , Article Surface and Coatings Technology ; Volume 204, Issue 9-10 , 2010 , Pages 1562-1568 ; 02578972 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Sharif University of Technology
    Abstract
    A developed route to form TiO2 self cleaning coatings on polycarbonate substrates is reported. TiO2 coatings on plastics may find widespread application in auto and construction industries if possess desired photocatalytic and mechanical properties. A chemical surface treatment method was used to create hydrophilic groups on the surface. X-ray photoelectron spectroscopy showed the treatment led to the oxidation of surface groups. TiO2 deposition was based on wet coating using an anatase sol of TiO2 nanoparticles of 30 nm size. The sol was synthesized using a sol-gel route. A pre-coat of peroxotitanium complex was employed to improve adhesion and inhibit the substrate degradation. The coating... 

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Modeling of shot-peening effects on the surface properties of a (Tib + Tic)/Ti-6Al-4V composite employing artificial neural networks

    , Article Materiali in Tehnologije ; Volume 50, Issue 6 , 2016 , Pages 851-860 ; 15802949 (ISSN) Maleki, E ; Zabihollah, A ; Sharif University of Technology
    Institute of Metals Technology 
    Abstract
    Titanium matrix composites (TMCs) have wide application prospects in the field of aerospace, automobile and other industries because of their good properties, such as high specific strength, good ductility, and excellent fatigue properties. However, in order to improve their fatigue strength and life, crack initiation and growth at the surface layers must be suppressed using surface treatments. Shot peening (SP) is an effective surface mechanical treatment method widely used in industry which can improve the mechanical properties of a surface. However, artificial neural networks (ANNs) have been used as an efficient approach to predict and optimize the science and engineering problems. In... 

    Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    , Article Journal of Nanoparticle Research ; Volume 18, Issue 9 , 2016 ; 13880764 (ISSN) Behzadi, A ; Mohammadi, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at... 

    The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells

    , Article Bioprocess and Biosystems Engineering ; Volume 39, Issue 7 , 2016 , Pages 1163-1172 ; 16157591 (ISSN) Hosseinzadeh, S ; Mahmoudifard, M ; Mohamadyar Toupkanlou, F ; Dodel, M ; Hajarizadeh, A ; Adabi, M ; Soleimani, M ; Sharif University of Technology
    Springer Verlag 
    Abstract
    Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value. On the other hand, PAN-PANi electrospun... 

    Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization

    , Article Applied Surface Science ; Volume 426 , 2017 , Pages 1023-1029 ; 01694332 (ISSN) Rashid, Z ; Soleimani, M ; Ghahremanzadeh, R ; Vossoughi, M ; Esmaeili, E ; Sharif University of Technology
    Abstract
    The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic... 

    Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

    , Article Biomedical Microdevices ; Volume 19, Issue 4 , 2017 ; 13872176 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Kiyoumarsioskouei, A ; Trung Nguyen, N ; Sharif University of Technology
    Abstract
    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung... 

    Smart and fragrant garment via surface modification of cotton fabric with cinnamon oil/stimuli responsive PNIPAAm/chitosan nano hydrogels

    , Article IEEE Transactions on Nanobioscience ; Volume 16, Issue 6 , 2017 , Pages 455-462 ; 15361241 (ISSN) Bashari, A ; Hemmatinejad, N ; Pourjavadi, A ; Sharif University of Technology
    Abstract
    This paper deals with obtaining aromatherapic textiles via applying stimuli-responsive poly N-isopropyl acryl amide (PNIPAAm) chitosan (PNCS) nano hydrogels containing cinnamon oil on cotton fabric and looks into the treated fabric characteristics as an antibacterial and temperaturepH responsive fabric. The semi-batch surfactant-free dispersion polymerization method was proposed to the synthesis of PNCS nano particles. The incorporation of modified β -cyclodextrin ( β-CD) into the PNCS nanohydrogel was performed in order to prepare a hydrophobic(cinnamon oil) carrier embedded in stimuli-responsive nanohydrogel. The β -CD postloading process of cinnamon oil in to the hydrogel nano particles... 

    Surface and mechanical properties of modified porous titanium scaffold

    , Article Surface and Coatings Technology ; Volume 315 , 2017 , Pages 61-66 ; 02578972 (ISSN) Khodaei, M ; Valanezhad, A ; Watanabe, I ; Yousefi, R ; Sharif University of Technology
    Abstract
    The bioinertness makes surface treatments essential to improve the bioactivity of porous titanium scaffold, and surface treatment might affect their mechanical properties. So finding an optimum condition lying between bioactivity and mechanical properties seems to be curial. In this research, the effect of the time of the thermal oxidation at 600 °C on apatite formation and mechanical properties of the porous titanium scaffold was studied. The results of thin film X-ray diffraction and Raman spectroscopy indicated that the surface of heat treated samples up to 480 min was mainly covered by rutile. Also, wettability measurement and in vitro apatite formation ability assessment indicated that... 

    Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review

    , Article Desalination ; Volume 420 , 2017 , Pages 330-383 ; 00119164 (ISSN) Asadollahi, M ; Bastani, D ; Musavi, S. A ; Sharif University of Technology
    Abstract
    Reverse osmosis (RO) membrane process has become the most promising technology for desalination to produce purified water. Among numerous polymeric materials used to fabricate RO membranes, aromatic polyamide thin film composite (TFC) membranes are dominant in commercial RO membrane processes because of their high salt rejection and water permeability as well as their excellent chemical, thermal, and mechanical stability. However, the major hindrance to the effective application of polyamide TFC RO membranes is membrane fouling. Furthermore, polyamide TFC RO membranes have limited stability to chlorine, which is commonly used as disinfect to control membrane biofouling. These two factors... 

    Fouling control mechanism by optimum ozone addition in submerged membrane bioreactors treating synthetic wastewater

    , Article Journal of Environmental Chemical Engineering ; Volume 6, Issue 6 , 2018 , Pages 7294-7301 ; 22133437 (ISSN) Mashayekhi, F ; Hazrati, H ; Shayegan, J ; Sharif University of Technology
    Abstract
    In this paper, the effect of ozone on membrane fouling of membrane bioreactor (MBR) systems was investigated. Sludge specification such as soluble microbial product (SMP), extracellular polymeric substance (EPS), viscosity, particle size distribution (PSD), microscopic observations and sludge volume index (SVI) in presence of ozone were determined. Further, EPS, Fourier-transform infrared (FTIR) analysis, excitation-emission matrix (EEM) fluorescence spectroscopy, and gel permission chromatography (GPC) are considered to determine cake layer characteristics. The results indicated COD removal did not show significant difference with ozonation. Ozone also increases the particle size and... 

    Surface modification of a hole transporting layer for an efficient perovskite solar cell with an enhanced fill factor and stability

    , Article Molecular Systems Design and Engineering ; Volume 3, Issue 5 , 2018 , Pages 717-722 ; 20589689 (ISSN) Tavakoli, M. M ; Tavakoli, R ; Prochowicz, D ; Yadav, P ; Saliba, M ; Sharif University of Technology
    Abstract
    The improvement of the quality of the hole transporting layer (HTL) plays a key role in the fabrication of highly efficient and stable perovskite solar cells (PSCs). Here, we used rubrene as a surface treatment agent on top of a spiro HTL. We found that rubrene can cover the pinholes of the spiro layer and provide an excellent contact layer for planar PSCs. Based on this modification, mobile gold ions from the metal electrode are prevented from diffusing through the HTL hindering the degradation of PSCs. The optimized device shows a maximum power conversion efficiency (PCE) of 19.87% and a 79% fill factor (FF), which are higher than the 17.98% PCE and 72% FF of the reference device. In... 

    Study on Effects of Short Wood Fibers on Physical and Mechanical Properties of Biodegradable Composite Based on Thermoplastic Starch

    , M.Sc. Thesis Sharif University of Technology Pesaran Haji Abbas, Ehsan (Author) ; Bagheri, Reza (Supervisor) ; Sayyed Reihani, Morteza (Supervisor)
    Abstract
    Due to the negative effects of conventional plastics on the enviroment, especially in the packaging sector, extensive efforts have been put to replace these polymers with biodegradable polymers. Starch is one of the biodegradable polymers which has attracted a lot of attentions because of low cost and good processability. Native starch has the form of granule and can be processed to a continuous phase after gelatinization in the presence of a plasticizer. The resulting material is a biodegradable plastic-like material called thermoplastic starch (TPS) which is processed using conventional technologies, but suffers from low mechanical properties and high hydrophilicity. Addition of natural... 

    “ Nano Oxide Layer Forming on the Surface of Porous Nitinol Shape Memory Alloy for Improving Surface Properties “

    , M.Sc. Thesis Sharif University of Technology Fattahzadeh, Mehrdad (Author) ; Sadrnejhad, Khatiboleslam (Supervisor)
    Abstract
    In this project ,it has been done different surface treatment on 6 samples of nitinol with 40 % prosity,three of them are anodized by H2SO4 ,Hf, Acetic acid, one of them is treated with plasma spray with TIO2 powder, one of them is putted in the furnace at 700 degrees for an hour, and the last one is bare ; Moreover, these treated samples are putted in Simulated body fluid for 16 days . After this period of time, we analyzed the results. Then the cell adhesion amount of osteo blast cells (MG 63) is measured to these samples by immersing them for 3 days in these cells.The results are investigated by SEM ,XRD(X pertpro produced by Panalitical), XRF(530-XRF-01), AAS( AA240), Roughness measuring... 

    Developing an Analytical Model for Predicting the Residual Stresses Induced by Shot Peening with Considering the Effect of Initial Surface Treatment

    , Ph.D. Dissertation Sharif University of Technology Sherafatnia, Khalil (Author) ; Farrahi, Gholam Hossein (Supervisor) ; Mahmoudi, Amir Hossein (Co-Supervisor)
    Abstract
    Shot peening is a cold-working process commonly used in industry to improve the fatigue performance, stress corrosion resistance and surface nano-crystallization of metallic parts. This process extends fatigue life via two mechanisms: Preventing the crack growth due to compressive residual stresses and, preventing the crack initiation because of increased material hardness. These mechanisms are the results of the bombardment of the component's surface with small spherical particles. In this research, an analytical model is developed for estimating the residual stress distribution induced by shot peening process. The modifications of the developed analytical model are related to... 

    Enhanced Electronic Properties in Mesoporous TiO2 Via Passivation Treatment in Perovskite Solar Cells

    , M.Sc. Thesis Sharif University of Technology Azadi, Moloud (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Perovskite solar cells are the new generation of solar cells, and are mainly introduced in two types of structures.1) planer and 2) mesoscopic structure. The difference between these two structures derives from the absence of mesoporous layer in the planer structures. The mesoporous layer acts as an electron transporting layer, and is mainly a titanium dioxide semiconductor. To apply the mesoporous layer, the preparation of the TiO2 paste is needed.The synthesis of titanium dioxide nanopowder for the preparation of TiO2 paste requires high temperature heat treatment and is not desirable in terms of energy consumption.Another weakness of this layer is the presence of surface defects, which... 

    hysical and Chemical Surface Modification of Titanium by Nanostructured Materials, and Biological Characterization for Use in Bone Tissue Implants

    , Ph.D. Dissertation Sharif University of Technology Rahnamaee, Yahya (Author) ; Bagheri, Reza (Supervisor) ; Vossoughi, Manochehr (Supervisor) ; Samadi Kuchaksaraei, Ali (Supervisor)
    Abstract
    According to human needs and in line with the development of advanced technologies, different biomedical Engineering fields like hard tissue implants are growing rapidly. Despite significant biotechnology Developments in recent years, some problems to the recognition of implants related osseointegration phenomena persist. The deficient osseointegration and implant-associated infections are key issues for the long-term clinical success of titanium and titanium alloy implants, while development of multifunctional surfaces that can simultaneously overcome these problems remains highly challenging. Therefore, the ultimate goal of this paper was to improve bone cell attachment and simultaneously...