Loading...
Search for: thermal-analysis
0.007 seconds
Total 71 records

    Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 341-349 ; ISSN: 09284931 Ganji, Y ; Kasra,M ; Salahshour Kordestani, S ; Bagheri Hariri, M ; Sharif University of Technology
    Abstract
    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell... 

    Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Vol. 29 , January , 2014 , pp. 317-327 ; ISSN: 17516161 Rajabzadeh, G ; Salehi, S ; Nemati, A ; Tavakoli, R ; Solati Hashjin, M ; Sharif University of Technology
    Abstract
    Despite brilliant properties of glass ionomer cement (GIC), its weak mechanical property poses an obstacle for its use in medical applications. The present research aims to formulate hydroxyapatite/yttria-stabilized zirconia (HA/YSZ) in the composition of GIC to enhance mechanical properties and to improve fluoride release of GIC. HA/YSZ was synthesized via a sol-gel method and characterized by applying X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-emission spectroscopy (XPS) and simultaneous thermal analysis (STA) along with transmission electron microscopy (TEM) methods. The synthesized nanocomposite was mixed with GIC at a fixed composition of 5.... 

    Synthesis and characterization of co-doped TiO2 thin films on glass-ceramic

    , Article Materials Science in Semiconductor Processing ; Vol. 26, Issue 1 , October , 2014 , pp. 41-48 ; ISSN: 13698001 Ahmadi, N ; Nemati, A ; Solati-Hashjin, M ; Sharif University of Technology
    Abstract
    In this research, an attempt was made to improve TiO2 photo-catalyst properties, thus pure, N-Ce co-doped TiO2 thin films were prepared on glass-ceramic substrate using a sol-gel dip-coating technique. The samples were calcinated in air at 475 °C, 550°C, and 650°C for 2 h. The result of simultaneous thermal analysis (STA) and X-ray diffraction (XRD) showed that the presence of Ce in TiO2 could inhibit the phase transformation from anatase to rutile and enhance the thermal stability, and anatase was the dominant phase in N-Ce co-doped TiO2 samples. Also based on the results, the doping results in decreasing the size of TiO 2 crystallite. The results of ultra violet-visible light diffuse... 

    Modeling of coke formation and catalyst deactivation in propane dehydrogenation over a commercial Pt-Sn/γ-Al2O3 catalyst

    , Article Petroleum Science and Technology ; Volume 31, Issue 23 , 2013 , Pages 2451-2462 ; 10916466 (ISSN) Niknaddaf, S ; Soltani, M ; Farjoo, A ; Khorasheh, F ; Sharif University of Technology
    2013
    Abstract
    Propane dehydrogenation was carried over a commercial Pt-Sn/γ-Al 2O3 catalyst at atmospheric pressure and reaction temperatures of 580, 600, and 620°C and WHSV of 11 h-1 in an experimental tubular quartz reactor. Propane conversions were measured for catalyst time on stream of up to nine days. The amounts of coke deposited on the catalyst were measured after one, three, six, and nine days on stream using a thermogravimetric differential thermal analyzer (TG-DTA) for each reaction temperature. The coke formation kinetics was successfully described by a coke formation model based on a monolayer-multilayer mechanism. In addition, catalyst deactivation was presented by a time-dependant... 

    Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture

    , Article Diamond and Related Materials ; Volume: 40 , 2013 , Pages: 107-114 ; 09259635 (ISSN) Mansoorianfar, M ; Shokrgozar, M. A ; Mehrjoo, M ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Recently, nanodiamonds have attracted interest in biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds, and biosensors. We incorporated diamond nanoparticles in alginate-bioactive glass films by electrophoretic process to prepare functional coatings for biomedical implants. Turbidity examination by time-resolved laser transmittance measurement revealed that a stable multi-component aqueous suspension of alginate, bioactive glass and diamond particles could be obtained at concentrations of 0.6, 1.3, and 0.65 g/l, respectively. Uniform films with ~ 5 μm thickness were deposited on 316 stainless steel foils by employing constant field... 

    Improved electron transportation of dye-sensitized solar cells using uniform mixed CNTs-TiO2 photoanode prepared by a new polymeric gel process

    , Article Journal of Nanoparticle Research ; Volume 15, Issue 9 , 2013 ; 13880764 (ISSN) Bakhshayesh, A. M ; Mohammadi, M. R ; Masihi, N ; Akhlaghi, M. H ; Sharif University of Technology
    2013
    Abstract
    A new facile strategy for fabrication of high surface area electrode in the form of mixtures of coated carbon nanotubes (CNTs) and TiO2 nanoparticles with various weight ratios is reported. The so-called polymeric gel process was used to deposit thick film containing uniform distribution of TiO2 nanoparticles and coated CNTs with high porosity by dip coating for dye-sensitized solar cells (DSSCs) applications. Based on simultaneous differential thermal analysis, the minimum annealing temperature to obtain inorganic- and organic-free films was determined at 500°C. X-ray diffraction analysis revealed that deposited films were composed of primary nanoparticles with crystallite size in the range... 

    Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column

    , Article Journal of Colloid and Interface Science ; Volume 404 , 2013 , Pages 117-126 ; 00219797 (ISSN) Nematollahzadeh, A ; Shojaei, A ; Abdekhodaie, M. J ; Sellergren, B ; Sharif University of Technology
    2013
    Abstract
    Bio-inspired Human Serum Albumin (HSA) imprinted polydopamine nano-layer was produced through oxidative polymerization of dopamine on the pore surface of HSA modified porous silica particles. The coating thickness was controlled by the reaction time and thereby varied within 0-12. nm. The samples were characterized by elemental analysis, FT-IR, DSC, SEM, TEM, TGA, physisorption and thermoporometry. The characterization confirmed the success of evolution and deposition of polydopamine layer on the silica pore surface. Batch rebinding experiment showed that the molecularly imprinted polymer (MIP) with 8.7. nm coating thickness, in comparison with the thinner and thicker coatings, displays the... 

    Effects of chemical composition on nanocrystallization kinetics, microstructure and magnetic properties of finemet-type amorphous alloys

    , Article Metals and Materials International ; Volume 19, Issue 4 , 2013 , Pages 643-649 ; 15989623 (ISSN) Shivaee, H. A ; Castellero, A ; Rizzi, P ; Tiberto, P ; Hosseini, H. R. M ; Baricco, M ; Sharif University of Technology
    2013
    Abstract
    In this study, the kinetics of nanocrystallization of amorphous Fe 73.5Si13.5B9Nb3Cu1 (F1) and Fe77Si11B9Nb2.4Cu0.6 (F2) alloys is investigated. The microstructure and magnetic properties of the nanocrystalline alloys are compared. The crystallization temperature of F2 alloy is shifted towards lower temperatures with respect to F1. Thus, the crystalline volume fraction and the crystalline grain size at specific annealing temperature for the F2 alloy are higher than for the F1 alloy, accounting for the higher coercive force of F2 alloy with respect to the one of F1 alloy. According to isoconversional methods, the activation energy for crystallization is variable as a function of transformed... 

    Synthesis and spectral properties of Nd-doped glass-ceramics in SiO 2-CaO-MgO system prepared by sol-gel method

    , Article Journal of Rare Earths ; Volume 31, Issue 6 , 2013 , Pages 595-599 ; 10020721 (ISSN) Masoud, E ; Zohreh, H ; Ali, N ; Sharif University of Technology
    2013
    Abstract
    SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd 3+ were synthesized with sol-gel method. Tetraethylorthosilicate (TEOS), Ca(NO3)2·4H2O, Mg(NO 3)2·6H2O, Nd(NO3) 3·6H2O, ethanol, distilled water, and HNO 3 were used as starting materials. The synthesized powder's properties were examined with simultaneous thermal analysis (STA), X-ray diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM) analysis. The STA curves showed that the softening point and crystallization temperatures were shifted to higher temperatures with increasing dopant content. Regarding XRD patterns of glass samples, Nd was found to act as an intermediate oxide in glass matrix. The XRD... 

    Analysis and characterization of phase evolution of nanosized BaTiO 3 powder synthesized through a chemically modified sol-gel process

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 43, Issue 11 , November , 2012 , Pages 4414-4426 ; 10735623 (ISSN) Ashiri, R ; Sharif University of Technology
    2012
    Abstract
    In the current research, a cost-effective and modified method with a high degree of reproducibility was proposed for the preparation of fine nanoscale and high-purity BaTiO3. In contrast to the other established methods, in this research, carbonate-free BaTiO3 nanopowders were prepared at a lower temperature and in a shorter time span. To reach an in-depth understanding of the scientific basis of the proposed process, an in-detail analysis was carried out for characterization of nanoscale BaTiO3 particles via differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and... 

    Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties

    , Article Powder Technology ; Volume 231 , November , 2012 , Pages 1-6 ; 00325910 (ISSN) Charkhi, A ; Kazemeini, M ; Ahmadi, S. J ; Kazemian, H ; Sharif University of Technology
    2012
    Abstract
    NaY zeolite nanoparticles were synthesized and shaped into the uniform spherical granules using a developed novel and simple two-step granulation technique. First, the alginate/nanozeolite or alginate/nanozeolite-bentonite spherical hybrid was successfully fabricated, and then the alginate was decomposed by calcinations resulting uniform spherical granules. To improve the mechanical stability of the prepared granules, bentonite was added as an inorganic binder at different ratios of 20wt.% to 40wt.%. Moreover, the effect of binder on the ion exchange properties of the prepared granules was studied. Increasing of binder content from 20wt.% to 40wt.% linearly enhanced the mechanical stability... 

    Synthesis and crystallization of lead-zirconium-titanate (PZT) nanotubes at the low temperature using carbon nanotubes (CNTs) as sacrificial templates

    , Article Advanced Powder Technology ; Volume 23, Issue 5 , September , 2012 , Pages 647-654 ; 09218831 (ISSN) Mohammadi, M. R ; Tabei, S. A ; Nemati, A ; Eder, D ; Pradeep, T ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Pb(Zr 0.52Ti 0.48)O 3 (PZT) nanotubes with diameters of 80-100 nm and a wall thickness of 15-20 nm were prepared by sol-gel template technique and using multi-walled carbon nanotubes (MWCNT) as sacrificial templates. The coating process of MWCNT with PZT precursor sol and removal of the carbon nanotubes by an interrupt heat treatment were discussed and studied by Raman spectroscopy. Simultaneous thermal analysis (STA) revealed that PZT nanotube crystallized at the low temperature of 410°C by the significantly low activation energy of crystallization of 103.7 kJ/mol. Moreover, based on the X-ray diffraction (XRD) pattern and selected area electron diffraction pattern the crystal structure of... 

    The effects of SiO 2 and K 2O on glass forming ability and structure of CaOTiO 2P 2O 5 glass system

    , Article Ceramics International ; Volume 38, Issue 4 , 2012 , Pages 3281-3290 ; 02728842 (ISSN) Ahmadi Mooghari, H. R ; Nemati, A ; Eftekhari Yekta, B ; Hamnabard, Z ; Sharif University of Technology
    2012
    Abstract
    The effects of SiO 2 and K 2O were investigated on the glass forming ability (GFA) and structural characteristics of CaOTiO 2P 2O 5 system. Differential thermal analyzer (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and 31P magic angle spinning NMR methods were applied for characterizations of the system. Unwanted crystallization in the initial three components base glass composition was observed by adding SiO 2 and crystalline phases such as TiP 2O 7, rutile (TiO 2) and cristobalite (SiO 2) were formed in it. The results showed that K 2O prevents crystallization of glasses and promotes the formation of glass. FT-IR and X-ray diffraction showed that the addition... 

    High temperature synthesis of SAPO-34: applying an L9 taguchi orthogonal design to investigate the effects of experimental parameters

    , Article Powder Technology ; Volume 217 , February , 2012 , Pages 223-230 ; 00325910 (ISSN) Dargahi, M ; Kazemian, H ; Soltanieh, M ; Hosseinpour, M ; Rohani, S ; Sharif University of Technology
    Abstract
    SAPO-34 zeolite-like particles were successfully synthesized at high temperature environment. An L9 orthogonal array of the Taguchi method was implemented to investigate the effects of experimental conditions to prepare SAPO-34 with respect to crystallinity of the final product phase. The results showed that the favorable phase crystallinity was improved by increasing the hydrothermal synthesis temperature and organic template content, whereas increasing the water content in synthesis mixture decreased the crystallinity. No significant changes in crystallinity of the final products were observed by increasing the synthesis duration. In addition, zeolite SAPO-5, which was formed as the... 

    Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1614-1622 ; 10263098 (ISSN) Gozalian, A ; Behnamghader, A ; Daliri, M ; Moshkforoush, A ; Sharif University of Technology
    Abstract
    The aim of this study was to investigate the thermal behavior of Mg-doped calcium phosphate compounds. Nanocrystalline HA and β-TCP mixtures containing different magnesium contents were synthesized via an alkoxide sol gel method. The ratio of (Ca+Mg)P was kept constant at 1.67, and the Mg content ranged between 0 and 3 mol%. The influence of magnesium on the phase composition, chemical structure, thermal behavior and morphological characteristics of nanopowders was analyzed using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Simultaneous Thermogravimetry and Differential Thermal Analysis (STA/DTA), Scanning Electron Microscopy (SEM) and Transmission Electron... 

    Large pore volume mesoporous copper particles and scaffold microporous carbon material obtained from an inorganic-organic nanohybrid material, copper-succinate-layered hydroxide

    , Article Journal of Colloid and Interface Science ; Volume 362, Issue 1 , 2011 , Pages 89-93 ; 00219797 (ISSN) Ghotbi, M. Y ; Bagheri, N ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Copper-succinate-layered hydroxide (CSLH), a new nanohybrid material, was synthesized as an inorganic-organic nanohybrid, in which organic moiety was intercalated between the layers of a single cation layered material, copper hydroxide nitrate. Microporous scaffold carbon material was obtained by thermal decomposition of the nanohybrid at 500°C under argon atmosphere followed by acid washing process. Furthermore, the heat-treated product of the nanohybrid at 600°C was ultrafine mesoporous metallic copper particles. The results of this study confirmed the great potential of CSLH to produce the carbon material with large surface area (580m2/g) and high pore volume copper powder (2.04cm3/g)  

    Crystallization kinetics of glass-ceramics by differential thermal analysis

    , Article Ceramics - Silikaty ; Volume 55, Issue 2 , May , 2011 , Pages 188-194 ; 08625468 (ISSN) Ghasemzadeh, M ; Nemat, A ; Nozad, A ; Hamnabard, Z ; Baghshah, S ; Sharif University of Technology
    2011
    Abstract
    The crystallization behavior of fluorphlogopite, a glass-ceramic in the MgO-SiO2-Al2O3-K2O-B 2O3-F system, was studied by substitution of Li 2O for K2O in the glass composition. DTA, XRD and SEM were used for the study of crystallization behavior, formed phases and microstructure of the resulting glass-ceramics. Crystallization kinetics of the glass was investigated under non-isothermal conditions, using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed, and both the activation energy of crystallization process as well as the crystallization mechanism were characterized. Calculated kinetic parameters indicated that the appropriate... 

    Controlling morphology and structure of nanocrystallineVcadmium sulfide (CdS) by tailoring solvothermal processing parameters

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 7 , 2011 , Pages 3011-3018 ; 13880764 (ISSN) Dalvand, P ; Mohammadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Cadmium sulfide (CdS) with different morphologies was successfully prepared by solvothermal process by controlling the processing parameters, including nature of precursor and solvent, reaction temperature and process time. X-ray diffraction patterns revealed that, in all cases highly pure and crystallized CdS with hexagonal structure were obtained. In addition, it was found that the processing parameters influence on preferable growth direction of CdS nanostructures. Field emission scanning electron microscope analysis showed that CdS nanowires with different aspect ratios were obtained (depending upon the reaction temperature and process time) in presence of sulfur powder and... 

    Modeling of heat transfer during controlled cooling in hot rod rolling of carbon steels

    , Article Applied Thermal Engineering ; Volume 31, Issue 4 , 2011 , Pages 487-492 ; 13594311 (ISSN) Nobari, A. H ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    A mathematical model is developed to predict temperature variations and austenite phase transformation kinetics in steel rods and wires during controlled cooling after hot rolling. Two-dimensional finite element analysis is employed to solve the governing heat conduction equation with non-uniform boundary conditions as it is subjected in practical cooling layout. The kinetics of austenite transformation is also determined using the cooling curves achieved from the thermal analysis together with the additivity rule. To verify the model results, temperature profiles in steel rods cooled under different conditions are measured experimentally in laboratory and also, temperature history during... 

    Synthesis and characterization of Al2O3-SiC nano composite by sol-gel method and the effect of tio2 on sintering

    , Article Journal of Nano Research ; Volume 13 , 2011 , Pages 7-19 ; 16625250 (ISSN) Rezaie, H. R ; Mohammad Rahimi, R ; Nemati, A ; Samadani, M ; Sharif University of Technology
    2011
    Abstract
    In the present article, α-Al2O3 nano powder was synthesized by a simple aqueous sol-gel method by using AlCl3 as precursor. It was shown that the gel calcined at 1000°C, 1100 °Cand 1200 °Cresulted in the formation of a crystalline ?-Al2O3 nano powder. In continue TEOS and saccharose was used to prepare SiO2 xerogels containing carbon nano particles. The conversion of the gel to β-SiC nano powders was accomplished by carbothermal reduction at 1500°Cfor 1 h in argon atmosphere. In second pace alumina matrix composites with nano particles of 5 vol% SiC were prepared with the addition of TiO 2 as sintering aid and densified by pressureless sintering method at 1600°Cand 1630°C for 2 h in nitrogen...