Loading...
Search for: thermodynamic-properties
0.008 seconds
Total 79 records

    Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials

    , Article Solar Energy ; Volume 244 , 2022 , Pages 474-483 ; 0038092X (ISSN) Toufigh, V ; Samadianfard, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The renewed attention paid to rammed earth materials in recent decades is related to their sustainability, high thermo-buffering capacity and relatively low cost. The energy performance of rammed earth materials can be enhanced with stabilization. However, some of thermal enhancement methods have destructive side-effects. In the current study, the effect of three different methods was investigated on thirteen different alternatives of rammed earth materials to improve energy efficiency of buildings. These methods include using phase change materials, cementitious admixtures and external insulators. Thermo-dynamic parameters such as time lag, thermal conductivity and heat flux were measured... 

    An integrated approach for predicting asphaltenes precipitation and deposition along wellbores

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehzadeh, M ; Husein, M. M ; Ghotbi, C ; Taghikhani, V ; Dabir, B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Deposition of asphaltenes upon precipitation is a main flow assurance concern, which propelled the development of various experimental and modeling techniques to accurately predict its occurrence. This work develops an integrated approach combining thermodynamic and deposition modules with a multiphase flow simulator to simultaneously model asphaltenes precipitation and deposition in wellbores. The Peng-Robinson equation of state and the modified Miller-Flory-Huggins theory are used to calculate the thermodynamic properties of the oil and asphaltenes precipitation, respectively. The deposition module is based on conservation laws for asphaltenes transport and is linked to the flow simulator... 

    Investigation uncovered the impact of anions on CO2 absorption by low viscous ether functionalized pyridinium ionic liquids

    , Article Journal of Molecular Liquids ; Volume 336 , August , 2021 ; 01677322 (ISSN) Hossein, S ; Dong, H ; Zeng, S ; Umair Ahmad, M ; Khurum Shehzad, F ; Wu, H ; Zhang, Y ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    Ionic liquids, which are designable and nonvolatile, have become a hot topic in the field of CO2 separation from industrial gases. In order to utilize the nonvolatile and low heat capacity of ionic liquids, it is necessary to solve the problem of high viscosity of pure ionic liquids. In the present study, ether functionalized pyridinium ion [E1Py]+ with good biodegradability and low viscosity was selected as cation. Ions containing cyano groups were used as anions, such as thiocyanate ion [SCN]-, dicyanamide ion [N(CN)2]-, tricyanomethanide ion [C(CN)3]-. Three ionic liquids with low viscosity were synthesized and characterized by 1HNMR, 13CNMR and FTIR. The physiochemical properties of... 

    Heat transfer in turbulent nanofluids: separation flow studies and development of novel correlations

    , Article Advanced Powder Technology ; Volume 31, Issue 8 , August , 2020 , Pages 3120-3133 Montazer, E ; Shafii, M. B ; Salami, E ; Muhamad, M. R ; Yarmand, H ; Gharehkhani, S ; Chowdhury, Z. Z ; Kazi, S. N ; Badarudin, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Convective heat transfer plays a significant role in numerous industrial cooling and heating applications. This method of heat transfer can be passively improved by reconfiguring flow passage, fluid thermophysical properties, or boundary conditions. The broader scope of nanotechnology introduced several studies of thermal engineering and heat transfer. Nano-fluids are one of such technology which can be thought of engineered colloidal fluids with nano-sized particles. In the present study, turbulent forced convection heat transfer to nanofluids in an axisymmetric abrupt expansion heat exchanger was investigated experimentally. During heat transfer investigation, the functionalized... 

    Mechanical, rheological and oxygen barrier properties of ethylene vinyl acetate/diamond nanocomposites for packaging applications

    , Article Diamond and Related Materials ; Volume 99 , 2019 ; 09259635 (ISSN) Amini, M ; Ramazani S. A., A ; Haddadi, S. A ; Kheradmand, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this work, the effects of the surface-modified nanodiamond particles (NDs) on the barrier, rheological, mechanical and thermal properties of ethylene vinyl acetate (EVA) composites for the packaging applications were investigated. Fourier transform infrared spectroscopy, as well as thermal gravimetric analysis were employed to study the grafting of vinyltriethoxy silane (VTS) on the surface of NDs. Afterwards, EVA samples containing 0, 0.1, 0.5, 1, 1.5 and 2 wt% of surface-modified NDs were prepared by a two-stage process including the solution and injection processes. In order to evaluate the physicochemical, rheological, mechanical and thermal properties of the EVA/NDs samples, field... 

    Thermodynamic analysis of a novel combined power and refrigeration cycle comprising of EKalina and ejector refrigeration cycles

    , Article International Journal of Refrigeration ; Volume 104 , 2019 , Pages 291-301 ; 01407007 (ISSN) Behnam, P ; Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A novel combined power and refrigeration cycle is introduced and analyzed from the thermodynamic standpoint. The proposed cycle is an integration of a Kalina cycle equipped with an ejector (EKalina) and an ejector refrigeration cycle (ERC). In order to enhance the overall cycle performance, the possibility of employing two-phase ejectors in combined power and refrigeration cycles is studied. A parametric analysis is conducted to investigate the effects of the key thermodynamic parameters namely turbine inlet pressure, split ratio, basic ammonia concentration, heat source and evaporator temperatures on the cycle performance. The developed model is also verified with available data and it is... 

    Development of a novel Peng–Robinson plus association equation of state for industrially important associating compounds

    , Article Neural Computing and Applications ; Volume 31, Issue 7 , 2019 , Pages 2107-2115 ; 09410643 (ISSN) Eslami, L ; Khadem Hamedani, B ; Sharif University of Technology
    Springer London  2019
    Abstract
    Cubic plus association (CPA) equations of state (EoSs) have found great interest in describing thermodynamic properties of associating fluids. In CPA EoSs, the association contribution proposed by Wertheim is added to cubic EoSs such as Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR). In different developments of CPA EoSs, adjusting the pure component properties such as critical temperature and critical pressure in addition to the association parameters is proposed in some works in the literature. In this work, the PR EoS has been extended to water, phenol, and a number of alcohols (methanol up to dodecanol) by addition of the Wertheim association contribution. In contrast to other CPA... 

    Simulation and performance improvement of cryogenic distillation column, using enhanced predictive Peng–Robinson equation of state

    , Article Fluid Phase Equilibria ; Volume 489 , 2019 , Pages 117-130 ; 03783812 (ISSN) Ardeshir Larijani, M ; Bayat, M ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a cryogenic distillation column has been designed and simulated via a computer code based on the theta method of convergence. The required thermodynamic properties are determined from the enhanced predictive Peng-Robinson (E-PPR 78) equation of state which has a good accuracy in predicting the corresponding thermodynamic properties of natural gas components. The combined code of distillation column/equation of state has been verified with that of another study. In the present study, the results are achieved by the constant molar over-flow and inclusion of energy equations assumptions. In order to have more accuracy in the results, the energy equations were considered in the... 

    The impact of morphology on thermal properties and aerobic biodegradation of physically compatibilized poly (lactic acid)/co-plasticized thermoplastic starch blends

    , Article Polymers for Advanced Technologies ; Volume 29, Issue 12 , 2018 , Pages 2880-2889 ; 10427147 (ISSN) Esmaeili, M ; Pircheraghi, G ; Bagheri, R ; Altstädt, V ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Recently, the use of biodegradable polymers became the applicable solution to reduce the environmental concerns, which are created by plastic wastes as well as restrictions of petroleum-based synthetic polymers. By this point of view, polylactic acid (PLA) as a biodegradable and bio-based polymer is resolving both aforementioned issues. While, the high cost of PLA and its slow biodegradation rate make researchers to blend it with a faster one, for instance, thermoplastic starch (TPS). Adding TPS into PLA can influence on the morphological structure, thermal stability, and biodegradability. In this study, the well-tuned co-plasticized TPS via sorbitol/glycerol mixture was melt mixed with PLA... 

    Experimental investigation of triton X-100 solution on pulsating heat pipe thermal performance

    , Article Journal of Thermophysics and Heat Transfer ; Volume 32, Issue 3 , 2018 , Pages 806-812 ; 08878722 (ISSN) Nazari, M. A ; Ghasempour, R ; Shafii, M. B ; Ahmadi, M. H ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2018
    Abstract
    Pulsating heat pipes are cooling devices that are partially filled with working fluid. Working fluid thermophysical properties affect the thermal performance of pulsating heat pipes. In this research, the effect of adding a Triton X-100 surfactant to pure water and using the mixture as a working fluid is investigated experimentally. The results indicate that adding surfactant leads to improvement in the thermal performance of the pulsating heat pipe. In particular, the maximum of the thermal resistance improvement is about 61%, which is attributed to 0.01% surfactant concentration. Higher heat transfer ability is attributed to lower surface tension and the contact angle of the mixture... 

    Influence of additives on the morphology of PVDF membranes based on phase diagram: thermodynamic and experimental study

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 21 , 2018 ; 00218995 (ISSN) Mohsenpour, S ; Khosravanian, A ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    In the present study, the morphology of asymmetric poly(vinylidene fluoride) blend membranes which were prepared by the phase inversion method is rationalized by comparing two non-dimensional number represent thermodynamic and kinetic properties of the prepared membrane. These two parameters change phase diagram and demixing rate between solvent and nonsolvent. TiO2 nanoparticles and polyvinylpyrrolidone were used as additives. Hansen solubility parameters of the components are calculated by Van Krevelen method. Furthermore, kinetic and thermodynamic properties of the prepared solutions are determined by drawing phase diagrams and controlling mass transfer rate during precipitation of... 

    The uncertainties of continuum-based cfd solvers to perform microscale hot-wire anemometer simulations in flow fields close to transitional regime

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Ghorbani, M. R ; Darbandi, H ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In this study, we simulate the flow and heat transfer during hot-wire anemometry and investigate its thermal behavior and physics using the Computational Fluid Dynamics (CFD) tool. In this regard, we use the finite-volume method and solve the compressible Navier-Stokes equations numerically in slightly non-continuum flow fields. We do not use any slip flow model to include the transitional flow physics in our simulations. Using the CFD method, we simulate the flow over hot-wire and evaluate the uncertainty of CFD in thermal simulation of hot-wire in low transitional flow regimes. The domain sizes and the mesh distributions are carefully chosen to avoid boundary condition error appearances.... 

    Computational investigation of graphene behavior under differential water pressure and possible mass transfer influences

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Jafari, S ; Darbandi, M ; Saidi, M.S ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    Because of its unique properties, graphene has attracted the attentions of many academic research groups and recently, the industry. One of the promising applications of the graphene is in micro/nano-sensors, e.g. using it as a pressure sensor. To use it in mechanical-based nano-sensors, it is very important to investigate the mechanical behavior of the nano-sized graphene sheet and its sensitivity to the medium changes applied on its faces. In this work, we use the molecular dynamics MD method and simulate the behavior of graphene sheet under differential water pressure influences. In this regard, a square straight monolayer graphene sheet is placed as a separator diaphragm between two... 

    A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 58 , 2016 , Pages 19-27 ; 18761070 (ISSN) KalantariMeybodi, M ; Daryasafar, A ; MoradiKoochi, M ; Moghadasi, J ; BabaeiMeybodi, R ; KhorramGhahfarokhi, A ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2016
    Abstract
    Nanofluids viscosity is one of the most important thermophysical properties in nanofluids usage especially in chemical and petroleum engineering applications. So it is highly desirable to predict the viscosity of nanofluids accurately. Experimental measurements are impossible in most situations and present models are not comprehensive and efficient especially for high temperature, high volume concentration and high viscosity values. In this study, a new correlation has been developed based on the comprehensive database of water based Al2O3, TiO2, SiO2 and CuO nanofluids viscosity data found in literature. The proposed correlation uses temperature, nanoparticle size, nanoparticle volumetric... 

    The effect of inlet turbulence intensity on nano-particulate soot formation in Kerosene-fueled combustors

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In this work, we numerically study the effects of turbulence intensity at the fuel and oxidizer stream inlets on the soot aerosol nano-particles formation in a kerosene fuel-based combustor. In this regard, we study the turbulence intensity effects specifically on the thermal performance and nanoparticulate soot aerosol emissions. To construct our computer model, we simulate the soot formation and oxidation using the Polycyclic Aromatic Hydrocarbons PAHs-inception and the hydroxyl concept, respectively. Additionally, the soot nucleation process is described using the phenyl route, in which the soot inception is described based on the formations of tworinged and three-ringed aromatics from... 

    Simulation and multi-objective optimization of a combined heat and power (CHP) system integrated with low-energy buildings

    , Article Journal of Building Engineering ; Volume 5 , 2016 , Pages 13-23 ; 23527102 (ISSN) Pirkandi, J ; Jokar, M. A ; Sameti, M ; Kasaeian, A ; Kasaeian, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    One of the novel applications of gas turbine technology is the integration of combined heat and power (CHP) system with micro-gas turbine which is spreading widely in the field of distributed generation and low-energy buildings. It has a promising great potential to meet the electrical and heating demands of residential buildings. In this study, a MATLAB code was developed to simulate and optimize the thermoeconomic performance of a gas turbine based CHP cycle. Three design parameters of this cycle considered in this research are compressor pressure ratio, turbine inlet temperature, and air mass flow rate. Firstly, two objective functions including exergetic efficiency and net power output... 

    Development of a novel Peng–Robinson plus association equation of state for industrially important associating compounds

    , Article Neural Computing and Applications ; Nov , 2015 , Pages 1-9 ; 09410643 (ISSN) Eslami, L ; Khadem Hamedani, B ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    Cubic plus association (CPA) equations of state (EoSs) have found great interest in describing thermodynamic properties of associating fluids. In CPA EoSs, the association contribution proposed by Wertheim is added to cubic EoSs such as Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR). In different developments of CPA EoSs, adjusting the pure component properties such as critical temperature and critical pressure in addition to the association parameters is proposed in some works in the literature. In this work, the PR EoS has been extended to water, phenol, and a number of alcohols (methanol up to dodecanol) by addition of the Wertheim association contribution. In contrast to other CPA... 

    Biodegradable ionic liquids: effects of temperature, alkyl side-chain length, and anion on the thermodynamic properties and interaction energies as determined by molecular dynamics simulations coupled with ab initio calculations

    , Article Industrial and Engineering Chemistry Research ; Volume 54, Issue 46 , November , 2015 , Pages 11678-11700 ; 08885885 (ISSN) Fakhraee, M ; Gholami, M. R ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    The effects of incorporating the ester functional group (-C=OO-) into the side chain of the 1-alkyl-3-methylimidazolium cation ([C1COOCnC1im]+, n = 1, 2, 4) paired with [Br]-, [NO3]-, [BF4]-, [PF6]-, [TfO]-, and [Tf2N]- anions on the various thermodynamic properties and interaction energies of these biodegradable ionic liquids (ILs) were investigated by means of molecular dynamics (MD) simulations combined with ab initio calculations in the temperature range of 298-550 K. Excluding the simulated density, the highest values of the volumetric properties such as molar volume, isobaric expansion coefficient, and isothermal compressibility coefficient can be attributed to the largest cation... 

    A comprehensive study on CO2 solubility in brine: Thermodynamic-based and neural network modeling

    , Article Fluid Phase Equilibria ; Volume 403 , October , 2015 , Pages 153-159 ; 03783812 (ISSN) Sadeghi, M ; Salami, H ; Taghikhani, V ; Robert, M. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Phase equilibrium data are required to estimate the capacity of a geological formation to sequester CO2. In this paper, a comprehensive study, including both thermodynamic and neural network modeling, is performed on CO2 solubility in brine. Brine is approximated by a NaCl solution. The Redlich-Kwong equation of state and Pitzer expansion are used to develop the thermodynamic model. The equation of state constants are adjusted by genetic algorithm optimization. A novel approach based on a neural network model is utilized as well. The temperature range in which the presented model is valid is 283-383K, and for pressure is 0-600bar, covering the temperature and pressure... 

    A rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixtures

    , Article Fluid Phase Equilibria ; Volume 399 , 2015 , Pages 30-39 ; 03783812 (ISSN) Fathinasab, M ; Ayatollahi, S ; Hemmati Sarapardeh, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Nitrogen has been appeared as a competitive gas injection alternative for gas-based enhanced oil recovery (EOR) processes. Minimum miscibility pressure (MMP) is the most important parameter to successfully design N2 flooding, which is traditionally measured through time consuming, expensive and cumbersome experiments. In this communication, genetic programming (GP) and constrained multivariable search methods have been combined to create a simple correlation for accurate determination of the MMP of N2-crude oil, based on the explicit functionality of reservoir temperature as well as thermodynamic properties of crude oil and injection gas. The parameters of the developed...