Loading...
Search for: three-dimensional-numerical-simulations
0.013 seconds

    A computational and analytical study into the use of counter-flow fluidic thrust vectoring nozzle for small gas turbine engines

    , Article Applied Mechanics and Materials ; Vol. 629, issue , 2014 , pp. 97-103 ; ISSN: 16609336 Banazadeh A ; Banazadeh, F ; Sharif University of Technology
    Abstract
    This paper provides an understanding of counter-flow fluidic thrust vectoring, in the presence of the secondary air vacuum, applied to the exhaust nozzle of a micro-jet engine. An analytical and numerical study is performed here on a divergent collar surface adjacent to the cylindrical exhaust duct system. The vectoring angle is controlled by manipulating the momentum flux through a vacuum gap that is located on a circle concentric to the main nozzle. Three dimensional numerical simulations are conducted by utilizing a computational fluid dynamics model with two-equation standard k-ε turbulence model to study the pressure and velocity distribution of internal flow and nozzle geometry.... 

    Flow and heat transfer analysis of turbine blade cooling passages using network method

    , Article ASME 2012 Gas Turbine India Conference, GTINDIA 2012 ; 2012 , Pages 523-531 ; 9780791845165 (ISBN) Alizadeh, M ; Izadi, A ; Fathi, A ; Khaledi, H ; Sharif University of Technology
    2012
    Abstract
    Modern turbine blades are cooled by air flowing through internal cooling passages. Three-Dimensional numerical simulation of these blade cooling passages is too time-consuming because of their complex geometries. These geometrical complexities exist as a result of using various kinds of cooling technologies such as rib turbulators (inline, staggered, or inclined ribs), pin fin, 90 and 180 degree turns (both sharp and gradual turns, with and without turbulators), finned passage, by-pass flow and tip cap impingement. One possible solution to simulate such sophisticated passages is to use the one-dimensional network method, which is presented in the current work. Turbine blade cooling channels... 

    Effect of non-uniform magnetic field on heat transfer of swirling ferrofluid flow inside tube with twisted tapes

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 117 , 2017 , Pages 70-79 ; 02552701 (ISSN) Mokhtari, M ; Hariri, S ; Barzegar Gerdroodbary, M ; Yeganeh, R ; Sharif University of Technology
    Abstract
    In this article, a three-dimensional numerical simulation is performed to investigate the effect of magnetic field on the heat transfer of ferrofluid inside a tube which is equipped with twisted tape. This work comprehensively focused on the flow feature and temperature distribution of ferrofluid in presence of non-uniform magnetic field while ferrofluid swirled inside a tube with twisted tape. In this study, it is assumed that the ferrofluid is single phase and laminar and constant heat flux is applied on the outside of the tube. The magnetic field is established by wire in parallel direction with the axis of the tube. The base fluid is water with 0.86 Vol% Nano particles (Fe3O4). The... 

    Three-dimensional numerical simulation of rising bubbles in the presence of cylindrical obstacles, using lattice boltzmann method

    , Article Journal of Molecular Liquids ; Volume 236 , 2017 , Pages 151-161 ; 01677322 (ISSN) Alizadeh, M ; Seyyedi, S. M ; Taeibi Rahni, M ; Ganji, D. D ; Sharif University of Technology
    Abstract
    A typical process in many industrial applications is rising bubble dynamic in viscous liquids like two-phase reactors. Examining the physical behavior of bubbles may improve the understanding of systems regarding design and operation. This study focused on the splitting of bubbles resulting from their impact on solid obstacles. Fragmentation of the bubbles appears in many applications such as lab on a chip in small scale or slug bubbly flow moving upward in a tube in large scales. Using a new index-function model in Lattice Boltzmann technique proposed by “He”, we simulated the deformation and motion of a bubble in different regimes, through which, we accurately captured a sharp interface... 

    Three-dimensional numerical simulation of a novel electroosmotic micromixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 25-33 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Abdorahimzadeh, S ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Lab-on-a-chip (LOC) systems have been widely used in chemical and medical analyses. In this study, a novel T-shaped electroosmotic micromixer was simulated and the effects of different parameters on the mixing process were examined. These parameters include; inlet angle, number of conducting hurdles, arrangements of the hurdles, geometry of hurdles and chambers, aspect ratios of the channel cross-sectional profile, hurdle radius, and depth. It was found that the inlet angle has a direct influence on mixing index (σ). The effect of various number of hurdles (one, two, three and four hurdles) and their orientations was investigated. Simulations revealed that using two conducting hurdles is the... 

    Two-and three-dimensional numerical simulations of supersonic ramped inlet

    , Article Scientia Iranica ; Volume 25, Issue 4 , 2018 , Pages 2198-2207 ; 10263098 (ISSN) Askari, R ; Soltani, M.R ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Two-dimensional (2D) and three-dimensional (3D) numerical simulations of an external compression supersonic ramped inlet are presented for a free stream Mach number of 2. A comparison made between numerical results and experimental data showed that multi-block structured gird using standard k - " turbulence model gives acceptable results. The shape of present inlet diffuser was transformed gradually into a circular one to encompass the Aerodynamic Interface Plane (AIP). It was observed that the 3D simulation predicted a more accurate static pressure distribution during the length of supersonic inlet and total pressure distribution at the AIP in comparison with the 2D one. Further, a better... 

    An analytical method for spiral-wound heat exchanger: design and cost estimation considering temperature-dependent fluid properties

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; 2020 Hosseinian, S. M ; Mostafazade Abolmaali, A ; Afshin, H ; Sharif University of Technology
    Emerald Group Publishing Ltd  2020
    Abstract
    Purpose: Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid temperature. This paper aims to present an analytical method for design and rating of SWHEs considering variable fluid properties with consistent shell geometry and single-phase fluid. Design/methodology/approach: To consider variations of fluid properties, the HE is divided into identical segments, and the fluid properties are assumed to be constant in each segment. Validation of the analytical method is accomplished by using three-dimensional numerical simulation with shear stress transport k-ω model, and... 

    An analytical method for spiral-wound heat exchanger: design and cost estimation considering temperature-dependent fluid properties

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 31, Issue 1 , 2021 , Pages 471-496 ; 09615539 (ISSN) Hosseinian, S. M ; Mostafazade Abolmaali, A ; Afshin, H ; Sharif University of Technology
    Emerald Group Holdings Ltd  2021
    Abstract
    Purpose: Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid temperature. This paper aims to present an analytical method for design and rating of SWHEs considering variable fluid properties with consistent shell geometry and single-phase fluid. Design/methodology/approach: To consider variations of fluid properties, the HE is divided into identical segments, and the fluid properties are assumed to be constant in each segment. Validation of the analytical method is accomplished by using three-dimensional numerical simulation with shear stress transport k-ω model, and...