Loading...
Search for: time-dependent
0.008 seconds
Total 117 records

    Investigation of intense femto-second laser ionization and dissociation of methane with time-dependent density-functional approach

    , Article Chemical Physics Letters ; Vol. 604 , 2014 , Pages 60-67 ; ISSN: 00092614 Irani, E ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    Abstract
    Three dimensional calculations of electronic dynamics of CH4 in a strong laser field are presented with time-dependent density-functional theory. Time evolution of dipole moment and electron localization function is presented. The dependence of dissociation rate on the laser characters is shown and optimal effective parameters are evaluated. The optimum field leads to 76% dissociation probability for Gaussian envelope and 40 fs (FWHM) at 10 16 W cm-2. The dissociation probability is calculated by optimum convolution of dual short pulses. By combining of field assisted dissociation process and Ehrenfest molecular dynamics, time variation of bond length, velocity and orientation effect are... 

    Cyclometalated heteronuclear Pt/Ag and Pt/Tl complexes: A structural and photophysical study

    , Article Dalton Transactions ; Vol. 43, issue. 3 , 2014 , pp. 1105-1116 ; ISSN: 14779226 Jamali, S ; Ghazfar, R ; Lalinde, E ; Jamshidi, Z ; Samouei, H ; Shahsavari, H. R ; Moreno, M. T ; Escudero-Adan, E ; Benet-Buchholz, J ; Milic, D ; Sharif University of Technology
    Abstract
    To investigate the factors influencing the luminescent properties of polymetallic cycloplatinated complexes a detailed study of the photophysical and structural properties of the heteronuclear complexes [Pt2Me 2(bhq)2(μ-dppy)2Ag2(μ-acetone) ](BF4)2, 2, [PtMe(bhq)(dppy)Tl]PF6, 3, and [Pt2Me2(bhq)2(dppy)2Tl]PF 6, 4, [bhq = benzo[h]quinoline, dppy = 2-(diphenylphosphino)pyridine] was conducted. Complexes 3 and 4 synthesized by the reaction of [PtMe(bhq)(dppy)], 1, with TlPF6 (1 or 1/2 equiv.) and stabilized by unsupported Pt-Tl bonds as revealed by multinuclear NMR spectroscopy and confirmed by X-ray crystallography for 3. DFT calculations for the previously reported butterfly Pt2Ag2 cluster 2... 

    Sensorimotor control learning using a new adaptive spiking neuro-fuzzy machine, Spike-IDS and STDP

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Vol. 8681 LNCS, issue , September , 2014 , p. 379-386 Firouzi, M ; Shouraki, S. B ; Conradt, J ; Sharif University of Technology
    Abstract
    Human mind from system perspective deals with high dimensional complex world as an adaptive Multi-Input Multi-Output complex system. This view is theorized by reductionism theory in philosophy of mind, where the world is represented as logical combination of simpler sub-systems for human so that operate with less energy. On the other hand, Human usually uses linguistic rules to describe and manipulate his expert knowledge about the world; the way that is well modeled by Fuzzy Logic. But how such a symbolic form of knowledge can be encoded and stored in plausible neural circuitry? Based on mentioned postulates, we have proposed an adaptive Neuro-Fuzzy machine in order to model a rule-based... 

    Effects of the van der Waals force, squeeze-film damping, and contact bounce on the dynamics of electrostatic microcantilevers before and after pull-in

    , Article Nonlinear Dynamics ; Vol. 77, issue. 1-2 , 2014 , p. 87-98 Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer. In this paper, a systematic method for deriving dynamic equation of microcantilevers under electrostatic force is presented. This model covers the behavior of the microcantilevers before and after the pull-in including the effects of van der Waals force, squeeze-film damping, and contact bounce. First, a polynomial approximate shape function with a time-dependent variable for each configuration is defined. Using Hamilton's principle, dynamic equations of microcantilever in all configurations have been derived. Comparison between modeling... 

    Nonlinear behavior of memristive devices during tuning process and its impact on STDP learning rule in memristive neural networks

    , Article Neural Computing and Applications ; Vol. 26, issue. 1 , 2014 , p. 67-75 Merrikh Bayat, F ; Shouraki, S. B ; Sharif University of Technology
    Abstract
    It is now widely accepted that memristive devices are promising candidates for the emulation of the behavior of biological synapses in neuromorphic systems. This is mainly because of the fact that like the strength of synapse, memristance of the memristive device can be tuned actively for example by the application of voltage or current. In addition, it is also possible to fabricate high density of memristive devices through the nano-crossbar structures. In this paper, we will show that there are some problems associated with memristive devices, which are playing the role of biological synapses. For example, we show that the variation rate of the memristance depends completely on the initial... 

    Stress–strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    , Article Mechanics of Time-Dependent Materials ; Vol. 18, issue. 3 , 2014 , p. 475-491 Farrahi, G. H ; Ghodrati, M ; Azadi, M ; Rezvani Rad, M ; Sharif University of Technology
    Abstract
    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening... 

    Diffusion induced isothermal solidification during transient liquid phase bonding of cast IN718 superalloy

    , Article Canadian Metallurgical Quarterly ; Vol. 53, issue. 1 , 2014 , p. 38-46 Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In transient liquid phase (TLP) bonding for commercial applications, one of the important key parameters is the holding time required for complete isothermal solidification tIS, which is a prerequisite for obtaining a proper bond microstructure. The objective of the study is to analyse the isothermal solidification kinetics during TLP bonding of cast IN718 nickel based superalloy. Experiments for TLP bonding were carried out using a Ni-7Cr-4.5Si-3Fe-3.2B (wt-%) amorphous interlayer at several bonding temperatures (1273-1373 K). The time required to obtain TLP joints free from centreline eutectic microconstituents was experimentally determined. Considering the solidification behaviour of... 

    Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: A compressible visco-hyperelastic approach

    , Article International Journal of Mechanics and Materials in Design ; Volume 9, Issue 4 , December , 2013 , Pages 385-399 ; 15691713 (ISSN) Khajehsaeid, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    Elastomers have wide and ever increasing applications in several industries. In this work a compressible visco-hyperelastic approach is employed to investigate the behavior of elastomeric materials. The time-discrete form of the material model is developed to be used in numerical simulations. This formulation provides a recursive relation to update the stress in any time step regarding the deformation history. By means of analytical solutions derived for pure torsion of a solid circular cylinder, the numerical implementation is validated and then, the response of an elastomeric bushing is investigated in torsional, axial and combined deformations. These bushings are used in suspension... 

    Novel mathematical approaches for analyzing time dependent creep deformations in reinforced metals

    , Article Journal of Mechanical Science and Technology ; Volume 27, Issue 11 , 2013 , Pages 3277-3285 ; 1738494X (ISSN) Monfared, V ; Mondali, M ; Abedian, A ; Sharif University of Technology
    2013
    Abstract
    The objective of this paper is to present some novel insights for solving a second stage creep problem in metal matrix composites. First, a new analytical approach is developed for obtaining some unknowns in second stage creep of short fiber composites under an applied axial load. The unknowns are the radial, circumferential, axial, shear and equivalent stresses, which are determined by approximation of creep constitutive equations and using proper assumed displacement rates. A nonlinear differential equation is solved employing suitable and correct approximate assumptions. Then, the difference of the stress components utilizing creep constitutive equations and assumed displacement rates is... 

    Bottleneck of using a single memristive device as a synapse

    , Article Neurocomputing ; Volume 115 , September , 2013 , Pages 166-168 ; 09252312 (ISSN) Merrikh Bayat, F ; Bagheri Shouraki, S ; Esmaili Paeen Afrakoti, I ; Sharif University of Technology
    2013
    Abstract
    In this study we will show that the variation rate of the memristance of the memristive device depends completely on its current memristance which means that it can change significantly with time during the learning phase. This phenomenon can degrade the performance of learning methods like Spike Timing-Dependent Plasticity (STDP) and cause the corresponding neuromorphic systems to become unstable  

    Gravity-driven thin liquid films over topographical substrates

    , Article European Physical Journal E ; Volume 36, Issue 6 , 2013 ; 12928941 (ISSN) Mazloomi, A ; Moosavi, A ; Esmaili, E ; Sharif University of Technology
    2013
    Abstract
    We investigate the time-dependent evolution of thin liquid films over inclined substrates using a multi-component lattice Boltzmann algorithm. Substrates with and without grooves are considered and the effects of the inclination angle on the dynamics and the coating of the substrates are studied. Our results indicate that the dynamics is enhanced and the ridge height and its displacement are increased by increasing the inclination angle. However, by increasing the inclination angle the maximum depth that can be successfully coated is reduced. Also, although for any given groove depth the width should be larger than a critical value for successful coating, the critical width decreases for... 

    Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

    , Article Carbon ; Volume 54 , 2013 , Pages 419-431 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Emamy, H ; Akhavan, F ; Sharif University of Technology
    2013
    Abstract
    Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 μg/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 μg/mL after 96 h. The oxidative stress was found as the main mechanism involved in the... 

    Calculation of the fuel composition and the thermo-neutronic parameters of the Bushehr's VVER-1000 reactor during the initial startup and the first cycle using the WIMSD5-B, CITATION-LDI2 and WERL codes

    , Article Annals of Nuclear Energy ; Volume 57 , 2013 , Pages 68-83 ; 03064549 (ISSN) Rahmani, Y ; Pazirandeh, A ; Ghofrani, M. B ; Sadighi, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the concentrations of fission products and fuel isotopes as well as the changes of the thermo-neutronic parameters of the Bushehr's VVER-1000 reactor were studied during the initial startup and the first cycle. In order to perform the time-dependent cell calculations and obtain the concentration of fuel elements, the WIMSD5-B code was used. Besides, by utilizing the CITATION-LDI2 code, the effective multiplication factor and the thermal power distribution of the reactor were calculated. A computer program (WERL code) was designed in order to perform accurate calculation of the temperature distribution of the reactor core. For this purpose, the Ross-Stoute, Weisman, and... 

    Dissociation of C-H molecular bond of methane by pulse shaped ultra-intense laser field

    , Article Chemical Physics Letters ; Volume 560 , 2013 , Pages 60-65 ; 00092614 (ISSN) Zare, S ; Irani, E ; Navid, H. A ; Dehghani, Z ; Anvari, A ; Sadighi Bonabi, R ; Sharif University of Technology
    2013
    Abstract
    The effects of laser field and laser pulse width on the dissociation probability of C-H bond of CH4 have been investigated. Calculation of time dependent Schrödinger equation by grid spectral method is carried out and it is produced optimistic results in comparison to the earlier Quasi-classical calculations. The results show that there is an excellent match with experimental data. In this work, a number of results in the emerging field of laser with intensity of I = 8 × 1013 W cm-2 and pulse duration of 100 fs are presented. The present modulated field leads to more than 20% improvement in the dissociation probability  

    Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots

    , Article Applied Optics ; Volume 52, Issue 6 , 2013 , Pages 1317-1324 ; 1559128X (ISSN) Ardakani, A. G ; Mahdavi, S. M ; Bahrampour, A. R ; Sharif University of Technology
    2013
    Abstract
    Time-dependent model is presented to simulate random lasers in the presence of an inhomogeneous gain medium. PbSe quantum dots (QDs) with an arbitrary size distribution are treated as an inhomogeneous gain medium. By introducing inhomogeneity of the PbSe QDs in polarization, rate, and Maxwell's equations, our model is constructed for a one-dimensional disordered system. By employing the finite difference time-domain method, the governing equations are numerically solved and lasing spectra and spatial distribution of the electric field are calculated. The effect of increasing the pumping rate on the laser characteristics is investigated. The results show that the number of lasing modes and... 

    A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation

    , Article Finite Elements in Analysis and Design ; Volume 62 , 2012 , Pages 18-27 ; 0168874X (ISSN) Naghdabadi, R ; Baghani, M ; Arghavani, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, employing the logarithmic (or Hencky) strain as a more physical measure of strain, the time-dependent response of compressible viscoelastic materials is investigated. In this regard, we present a phenomenological finite strain viscoelastic constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The formulation is based on the multiplicative decomposition of the deformation gradient into elastic and viscoelastic parts, together with the use of the isotropic property of the Helmholtz strain energy function. Making use of a logarithmic mapping, we present an appropriate form of the proposed constitutive equations in the... 

    Improvement of polymer flooding using in-situ releasing of smart nano-scale coated polymer particles in porous media

    , Article Energy Exploration and Exploitation ; Volume 30, Issue 6 , 2012 , Pages 915-940 ; 01445987 (ISSN) Ashrafizadeh, M ; Ramazani, S. A. A ; Sadeghnejad, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this paper is modeling and simulation of in-situ releasing of smart nano-sized core-shell particles at the water-oil interface during polymer flooding. During the polymer flooding process, when these nano-particles reach the water-oil interface, migrate to the oil phase and the hydrophobic layer of them dissolves in this phase. After dissolution of this protective nano-sized layer, the hydrophilic core containing a water-soluble ultra high molecular weight polymer diffuses back into the water phase and with dissolving in this phase, dramatically increases viscosity of flooding water in the neighborhood of the water-oil interface. In this study, two different... 

    A thermodynamically-consistent 3 D constitutive model for shape memory polymers

    , Article International Journal of Plasticity ; Volume 35 , 2012 , Pages 13-30 ; 07496419 (ISSN) Baghani, M ; Naghdabadi, R ; Arghavani, J ; Sohrabpour, S ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The ever increasing applications of shape memory polymers have motivated the development of appropriate constitutive models for these materials. In this work, we present a 3 D constitutive model for shape memory polymers under time-dependent multiaxial thermomechanical loadings in the small strain regime. The derivation is based on an additive decomposition of the strain into six parts and satisfying the second law of thermodynamics in Clausius-Duhem inequality form. In the constitutive model, the evolution laws for internal variables are derived during both cooling and heating thermomechanical loadings. The viscous effects are also fully accounted for in the proposed model. Further, we... 

    Time and space extended-particle in cell model for electromagnetic particle algorithms

    , Article Physics of Plasmas ; Volume 19, Issue 3 , 2012 ; 1070664X (ISSN) Yazdanpanah, J ; Anvari, A ; Sharif University of Technology
    Abstract
    A general method for deriving electromagnetic particle in cell (EMPIC) algorithms has been given by Eastwood [Comput. Phys. Commun. 64, 252 (1991)]. This method devises variation of the action-integral to find discrete governing equations. The most important advantage of this method is automatic inclusion of the time coordinate via the action integral into the computational domain. This inclusion is inevitable because electromagnetic algorithms are based on time evolution of the system from its initial state. The drawback of this method is that it is rather abstract. This causes obscurity of particle-mesh interactions and makes it hard to analyze physical treatments of the computational... 

    Modeling of viscoelastic solid polymers using a boundary element formulation with considering a body load

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 499-504 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Ashrafi, H ; Bahadori, M. R ; Shariyat, M ; Sharif University of Technology
    Abstract
    In this work, a boundary element formulation for 2D linear viscoelastic solid polymers subjected to body force of gravity has been presented. Structural analysis of solid polymers is one of the most important subjects in advanced engineering structures. From basic assumptions of the viscoelastic constitutive equations and the weighted residual techniques, a simple but effective boundary element formulation is implemented for standard linear solid (SLS) model. The SLS model provides an approximate representation of observed behavior of a real advanced polymer in its viscoelastic range. This approach avoids the use of relaxation functions and mathematical transformations, and it is able to...