Loading...
Search for: time-series
0.011 seconds
Total 159 records

    A Periodic Time Series Application in Housing Price Analysis (Case Study of Tehran)

    , M.Sc. Thesis Sharif University of Technology Shahhosseini, Mehrnoush (Author) ; Souri, Davoud (Supervisor)
    Abstract
    The seasonal fluctuations in economics variables relate to the different behavior of economic agents across different seasons. In past, seasonality has been viewed as a redundant feature that needs to be removed from data before economic analysis. From 1988, modeling seasonality has become the major concern of many economists; moreover, it was seen that many economic analysis and forecasts could be flawed if seasonality is ignored. In the present research, periodic times series approach is used for the first time in modeling the seasonality feature of the housing market. Regarding the importance of the housing sector in economy from micro and macroeconomic points of view, using a more... 

    Quantitative Analysis of Epileptic Seizure EEG

    , M.Sc. Thesis Sharif University of Technology Hoseini, Mahmood (Author) ; Rahimi Tabar, Mohammad Reza (Supervisor)
    Abstract
    Since recording first electroencephalogram (EEG) of human brain in 1929 until now it becomes as a powerful tool in neuroscience. At first information extraction was done by visionary approaches only. But because of some problems in the context of inaccuracy and also in analyzing data different methods were proposed in order to extract hidden information of EEG. Among these approaches Fourier transformation was suggested as a very useful method that could draw out so many characteristics of signal different frequency components. However this way had many faults that cause limitation in analyzing time series and as a result other methods have been considered. One method that later has been... 

    Biomolecules and Polymers Translocation Through Biological Single Nanopores and Current Characteristics Analysis

    , Ph.D. Dissertation Sharif University of Technology Haji Abdolvahab, Rouhollah (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Mobasheri, Hamid (Co-Advisor)
    Abstract
    Translocation processes are ubiquitous in biology and biotechnology. Translocation of small molecules, e. g. sugar from maltoporin, metabolites through bacteria and macromolecules like proteins, from channels of cellular organelles and or RNA translocation though
    nuclear pores are of vital importance for cellular metabolism. One of the important applications of translocation processes in biotechnology is to sense translocating macromolecules or small molecules by analyzing the current passing through natural or synthesis channels. Improving our knowledge about this process can also help us to develop new methods for designing the appropriate drugs. In this thesis by studying and... 

    Spectral Analysis of Air Pollution in Tehran

    , M.Sc. Thesis Sharif University of Technology Zare Shahneh, Maryam (Author) ; Arhami, Mohammad (Supervisor)
    Abstract
    Tehran possesses various environmental crises due to excessive population growth, a huge increase of vehicles and heavy concentrated industries. One of the most important concern is air pollution. Spectral Analysis by discrete Fourier transform are described and applied to harmonic analysis of time series for detecting Present periodicities.
    The current work proposes an approach for the determine the contribution of different frequencies to the data variance using air quality measured data. In this research, we present a comprehensive review of methods for spectral analysis of nonuniformly sampled data. Because of The air quality data in Tehran have irregular sampling periods and... 

    Housing Market’s Cycles and Its Realtion to Economic Business Cycles in Iran

    , M.Sc. Thesis Sharif University of Technology Najafi Ziarani, Fateme (Author) ; Fatemi, Farshad (Supervisor) ; Barakchian, Mahdi (Co-Advisor)
    Abstract
    Implying non-model based approach and using seasonal data, we determined cyclical component of housing market and discussed about its lagging or leading behavior to overall economic business cycles in Iran. To extract cyclical component we applied band pass filters, including Hodrick-Prescot, Baxter- King, Butterworth and Christiano-Fitzjerald, and Bry-Boschan’s algorithm on any time series which is able to explain housing market’s behavior in aggregate level. After examining many criteria we found that real residential investment in urban cycles depict cyclical behavior of housing investment. Real residential investment’ cycles in urban lag monetary base rate cycles and m1 rate cycles which... 

    Short-term Load Forecasting

    , M.Sc. Thesis Sharif University of Technology Shokuhian, Hamideh (Author) ; Fatemi Ardestani, Farshad (Supervisor) ; Barakchian, Mahdi (Supervisor)
    Abstract
    In this thesis we are going to forecast the hourly consumption of the electricity over the country with two models and then, combine them. The first model decomposes the consumption to a deterministic trend and a stochastic residual. The second one assumes that the trend part is also stochastic.Once the consumption is being predicted separately by the models, in the second part of the thesis, we will combine the results to get a final prediction. This prediction is going to be compared with the load forecast of the Dispatching Unit of the electricity network as a base model. We are going to answer two important questions: firstly, does combining the models give a better prediction or not,... 

    An Access Control System for Time Series Data in NoSQL Databases

    , M.Sc. Thesis Sharif University of Technology Noury, Amir (Author) ; Amini, Morteza (Supervisor)
    Abstract
    An important class of applications which have been rapidly growing recently is the one that create and use time series data. These types of data sets are ordered based on the timestamps associated to their data items. In practice, traditional relational databases are unable to satisfy the requirements of these data sets; however, NoSQL databases with column-wide data structure are appropriate infrastructure for them. These databases are very efficient in read and write operations (especially for time series data, which are ordered) and are able to store unstructured data. Time series data may contain valuable and sensitive information; hence, they should be protected from the information... 

    The Application of Chaos Theory and Nonlinear Structures in Financial Time Series

    , M.Sc. Thesis Sharif University of Technology Hosseini Tash, Fatemeh Sadat (Author) ; Modarres Yazdi, Mohammad (Supervisor)
    Abstract
    Financial and monetary markets are appropriate areas of applying Chaos Theory. Firstly, current theories of financial and monetary economics state that economic and financial variables such as exchange rates and stock prices are stochastic, so forecasting them is almost impossible. Secondly, if we find the hidden ordered and deterministic trends, we can achieve considerable profits. In this piece of research, we evaluate different methods and tests of detecting chaos in financial time series, and choose the most applicable methods to test financial markets’ indices. The main three indices of Tehran Stock Exchange, including Price, Finance and Industry indices, are examined. A sample of the... 

    Identifying the Main Factors Affecting Road Accidents in Iran Through Data Mining, Determining the Optimal Solution in Mitigation and Forecasting its Effectiveness Through Arima Models

    , M.Sc. Thesis Sharif University of Technology Karami, Arya (Author) ; Akhavan Niaki, Taghi (Supervisor)
    Abstract
    Road accidents are unfortunate events that cause more thanl16000 deaths each year in Iran. Intercity accidents require a comprehensive plan to reduce casualties because the number of roads users are increasing and the accidents account for nearlyl65% of fatalities. In this study, we first tried to identify the status of Iran through a study of traffic accidents in the world, and then the research and activities carried out in Iran were analyzed to find new and effective solutions. Using the daily fatalities data froml2008 tol2014, and using the new methodology presented in this research based on the Discrete Fourier Transformation (DFT), the Box-Jenkins models and the Secant method, the... 

    Chaos Control in Continuous Time Systems Using Delayed Phase Space Constructed by Takens’ Embedding Theory

    , M.Sc. Thesis Sharif University of Technology Kaveh, Hojjat (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    This research has dedicated to study the control of chaos when the system dynamics is unknown and there are some limitations on measuring states. There are many chaotic systems with these features occurring in many biological, economical and mechanical systems. The usual chaos control methods do not have the ability to present a systematic control method for these kinds of systems. To fulfill these strict conditions we have employed Takens embedding theory which guarantees the preservation of topological characteristics of the chaotic attractor under an embedding named "Takens transformation". Takens transformation just needs time series of one of the measurable states. This transformation... 

    Processing the Local Field Potential Signals in Comparison to Neighboring Simple and Complex Neurons of Primary Visual Cortex

    , M.Sc. Thesis Sharif University of Technology Eftekhar, Morteza (Author) ; Lashgari, Reza (Supervisor)
    Abstract
    In neural systems of living organism, moreover than differences in anatomic structure of cells, there is also differences in physiological functions of analogous cells.Specification and categorization of neurons based on physiological functions is one of objectives of neuroscience. Study of cognitive behaviors and systematic study of neural system, modeling and practical applications in neural prosthesis design are some of applications of categorizing neural cells. Neural signals can be studied by Spike rate of a single neuron activity or Local Field Potential (LFP) of a finite number of neurons. In previous studies neurons of first visual cortex are divided into two groups of simple and... 

    Using Time Series and Planning Uncertain Demand in Supply Chain with System Dynamics Approach

    , M.Sc. Thesis Sharif University of Technology Rezaei, Davoud (Author) ; Kianfar, Farhad (Supervisor)
    Abstract
    In the field of supply chain, management constantly seeks to adopt strategies for realizing its targeted objectives. The supply chain, therefore, includes integrated production-distribution processes with all effective parts where proper management requires a comprehensive and dynamic approach. It is necessary to meet required items at required time. This becomes more important with the supply systems providing items. On the other hand, the difficulty of supply chain management, decisions, and policy-making can be increased by a wide range of conditions such as changes in demand. Thus, a comprehensive approach is needed to take the present dynamics into account. The current paper develops a... 

    Time Series Analysis Of Meteorological-Climatic Variables For Urmia Lake Basin

    , M.Sc. Thesis Sharif University of Technology Hashemzadeh, Mohammad (Author) ; Tajrishy, Masoud (Supervisor)
    Abstract
    Human as an important part of the natural environment and can exert their positive or negative effects in the form of long-term and short-term on a natural environment. Human impacts on the natural system are very complex and consist of various components. The most considerable among them from past to now are maybe land use and land cover change, although, the impact of dam construction, water pollution, air pollution and etc, can not be neglected. To quantify the impact of these changes, many researchers have studied meteorological and climatic parameters using statistical relationships, but one major problem always existed, the low spatial accuracy of meteorological data. In recent years,... 

    Optimization of Support Vector Regression Parameters Using Firefly Algorithm

    , M.Sc. Thesis Sharif University of Technology Ghanbari, Mohammad Reza (Author) ; Mahdavi-Amiri, Nezameddin (Supervisor)
    Abstract
    Support vector regression (SVR) in the field of machine learning attracted much attention because of its attractive features and high efficiency for high-dimensional and nonlinear data. Although support vector regression has shown to be very effective for prediction problems, it is necessary to adjust the parameters contained therein to obtain the desired output with error rates. In the past, this was done manually, by trial and error. Over time and by development of optimization algorithms, one of the newest methods to solve such problems is the meta-heuristic optimization algorithms. Therefore, in this thesis, we use the firefly optimization algorithm, which is a population-based... 

    Chaos Control in Delayed phase Space Constructed by the Takens' Embedding Theory

    , M.Sc. Thesis Sharif University of Technology Hajiloo, Reza (Author) ; Salarieh, Hassan (Supervisor) ; Alasty, Aria (Supervisor)
    Abstract
    One of the most surprising lessons of dynamical systems theory is that the phase spaces of simple nonlinear systems may contain strange attractors. For certain simple systems, such as pendulum, direct observations of the phase space and finding strange attractors are possible. But physical systems in which all the relevant dynamical variables can be simultaneously monitored are relatively scarce. Takens’ theory shows how a time-series of measurements of a single observable state can be often used to reconstruct qualitative features of the phase space of the system. In this research, using the time-series of one measurable state, an algorithm is proposed to control chaos. The approach... 

    Activation Detection in fMRI Using Nonlinear Time Series Analysis

    , M.Sc. Thesis Sharif University of Technology Taalimi, Ali (Author) ; Fatemizadeh, Emadeddin (Supervisor)
    Abstract
    Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuroimaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities to unravel the mysteries and advance the understanding of the human brain, as well as to perform pre-surgical examinations in order to optimize surgical interventions. To obtain these goals the analysis of fMRI is the first condition which should be met. First methods were linear and assumed the... 

    Bootstrap-based Ensemble Clustering of Resting-state fMRI Time Series

    , M.Sc. Thesis Sharif University of Technology Ashtari, Pooya (Author) ; Vosoughi Vahdat, Bijan (Supervisor)
    Abstract
    Studies in recent years have shown formation of strongly functionally linked sub-networks during rest, networks that are often referred to as resting-state networks. RSNs not only have basic information about the brain but also play a key role in detecting brain disorders, such as Alzheimer and Autism; Consequently, they have been remarkably noticed by neuroscientists. Numerous methods have been used in order to extract RSNs using resting-states fMRI time series. Independent component analysis (ICA) is the most common method, whi have been reported to show a high level of consistency neurophysiology; however, its results is unstable in subject-level. is weakness restricted the ICA... 

    Study of Statistical Behavior of Chaotic Maps and Design of Stochastic Models for Reconstruction and Prediction of Behavioral Patterns of Chaotic Systems

    , M.Sc. Thesis Sharif University of Technology Jokar, Meysam (Author) ; Salarieh, Hassan (Supervisor) ; Alasty, Aria (Supervisor)
    Abstract
    Chaotic time series analysis, study of statistical behavior of chaotic maps and eventually an attempt to reconstruction and prediction of dynamical and statistical properties of output data of chaotic systems using stochastic models such as Markov models and autoregressive-moving average models are the main purposes of the present research. Examples of chaotic time series abound in the output of economics, engineering systems, the natural sciences (especially geophysics and meteorology) and social sciences. An intrinsic feature of an output time series of a dynamic system is that, adjacent observations are dependent. Time series analysis is concerned with techniques for the analysis of this... 

    S&P500 Intelligent Trading Using Neural Networks

    , M.Sc. Thesis Sharif University of Technology Hoseinzade, Saeid (Author) ; Akhavan Niaki, Taghi (Supervisor)
    Abstract
    This project tries to select the inputs which really affect the change in the direction of S&P500. For this purpose, design of experiments and analysis of variance are used. T tests are carried out to calculate the statistical significance of mean differences. Experiment results indicate that the designed neural networks with the selected inputs significantly outperform the traditional logit model with respect of the number of correct predictions. Moreover, real trades are simulated using the neural network predictions in the test period and the results show that using the designed neural network can significantly increase the income.

     

    Change Point Estimation for Multistage Processes

    , Ph.D. Dissertation Sharif University of Technology Davoodi, Mehdi (Author) ; Akhavan Niaki, Taghi (Supervisor)
    Abstract
    Knowing the time of change would narrow the search to find and identify the variables disturbing a process. Having this information, an appropriate corrective action could be implemented and valuable time could be saved. Multistage processes that are often observed in current manufacturing processes must be monitored to assure quality products. The change-point detection of such processes has not been proposes investigated yet. Thus, this dissertation proposes maximum likelihood step-change estimators of two kinds of these processes. First, a multistage process with variable quality characteristics is considered and formulated by the first-order auto-regressive model. For the location...