Loading...
Search for: tissue-engineering
0.009 seconds
Total 272 records

    Development of sol-gel-derived multi-wall carbon nanotube/hydroxyapatite nanocomposite powders for bone substitution

    , Article Journal of Composite Materials ; Vol. 48, issue. 4 , February , 2014 , pp. 483-489 ; ISSN: 00219983 Hooshmand, T ; Abrishamchian, A ; Najafi, F ; Mohammadi, M ; Najafi, H ; Tahriri, M ; Sharif University of Technology
    Abstract
    Carbon nanotubes with unique physical and mechanical properties have shown great potential for biological applications, including tissue engineering and mimicking the structure and properties of human bones. In the present work, sol-gel synthesized nanocomposite powder of multi-wall carbon nanotube/hydroxyapatite characterized using field-emission scanning electron microscopy, transmission electron microscope, X-ray diffraction, Fourier transform infra-red spectroscopy and thermal analyses. The results show homogenous dispersion of nanotube in well-crystallized hydroxyapatite ceramic matrix. Scanning electron microscopy and transmission electron microscope observations show the sodium... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; Nov , 2014 , p. 40-43 Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Graphene: Promises, facts, opportunities, and challenges in nanomedicine

    , Article Chemical Reviews ; Volume 113, Issue 5 , 2013 , Pages 3407-3424 ; 00092665 (ISSN) Mao, H. Y ; Laurent, S ; Chen, W ; Akhavan, O ; Imani, M ; Ashkarran, A. A ; Mahmoudi, M ; Sharif University of Technology
    2013
    Abstract
    Graphene, a two-dimensional (2D) sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice, has led to an explosion of interest in the field of materials science, physics, chemistry, and biotechnology since the few-layers graphene (FLG) flakes were isolated from graphite in 2004. For an extended search, derivatives of nanomedicine such as biosensing, biomedical, antibacterial, diagnosis, cancer and photothermal therapy, drug delivery, stem cell, tissue engineering, imaging, protein interaction, DNA, RNA, toxicity, and so on were also added. Since carbon nanotubes are normally described as rolled-up cylinders of graphene sheets and the controllable synthesis of nanotubes is well... 

    In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process

    , Article Materials Science and Engineering C ; Volume 33, Issue 1 , 2013 , Pages 390-396 ; 09284931 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were... 

    Development of hydroxyapatite nanorods-polycaprolactone composites and scaffolds derived from a novel in-situ sol-gel process

    , Article Tissue Engineering and Regenerative Medicine ; Volume 9, Issue 6 , 2012 , Pages 295-303 ; 17382696 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2012
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which displays splendid biocompatibility and bioactivity properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL) was employed as a matrix and hydroxyapatite nanorods were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in-situ sol-gel process using low cost chemicals. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD),... 

    Manipulating failure mechanism of rapid prototyped scaffolds by changing nodal connectivity and geometry of the pores

    , Article Journal of Biomechanics ; Volume 45, Issue 16 , 2012 , Pages 2866-2875 ; 00219290 (ISSN) Amirkhani, S ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
    2012
    Abstract
    The performance of cellular solids in biomedical applications relies strongly on a detailed understanding of the effects of pore topology on mechanical properties. This study aims at characterizing the failure mechanism of scaffolds based on nodal connectivity (number of struts that meet in joints) and geometry of the pores. Plastic models of scaffolds having the same relative density but different cubic and trigonal unit cells were designed and then fabricated via three dimensional (3-D) printing. Unit cells were repeated in different arrangements in 3-D space. An in-situ imaging technique was utilized to study the progressive deformation of the scaffold models. Different nodal... 

    Size-dependent genotoxicity of graphene nanoplatelets in human stem cells

    , Article Biomaterials ; Volume 33, Issue 32 , 2012 , Pages 8017-8025 ; 01429612 (ISSN) Akhavan, O ; Ghaderi, E ; Akhavan, A ; Sharif University of Technology
    2012
    Abstract
    Reduced graphene oxide nanoplatelets (rGONPs) were synthesized by sonication of covalently PEGylated GO sheets followed by a chemical reduction using hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs), as a fundamental factor in tissue engineering, were isolated from umbilical cord blood (as a recently proposed source for extracting fresh hMSCs) to investigate, for the first time, the size-dependent cyto- and geno-toxic effects of the rGONPs on the cells. The cell viability test showed significant cell destructions by 1.0 μg/mL rGONPs with average lateral dimensions (ALDs) of 11±4 nm, while the rGO sheets with ALDs of 3.8±0.4 μm could exhibit a significant cytotoxic... 

    Supramolecular polycaprolactone nanocomposite based on functionalized hydroxyapatite

    , Article Journal of Bioactive and Compatible Polymers ; Volume 27, Issue 5 , January , 2012 , Pages 467-480 ; 08839115 (ISSN) Mehmanchi, M ; Shokrollahi, P ; Atai, M ; Omidian, H ; Bagheri, R ; Sharif University of Technology
    SAGE  2012
    Abstract
    Arms bearing ureido-pyrimidinone functional groups with self-association capability (through quadruple hydrogen bonds) were successfully grafted onto hydroxyapatite nanoparticles. The supramolecularly modified nanoparticles (nHApUPy) exhibited enhanced colloidal stability compared to the original hydroxyapatite nanoparticles and were uniformly dispersed in supramolecular polycaprolactone in PCL(UPy)2/HApUPy nanocomposites at different filler loadings. The combined atomic force microscopy, mechanical, and rheological analyses confirmed a high degree of compatibility of HApUPy nanoparticles with the polymer matrix. The temperature dependence of the supramolecular structure in PCL(UPy)2/HApUPy... 

    Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds

    , Article Acta Materialia ; Volume 60, Issue 6-7 , 2012 , Pages 2778-2789 ; 13596454 (ISSN) Amirkhani, S ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
    2012
    Abstract
    Rapid prototyping is a promising technique for producing tissue engineering scaffolds due to its capacity to generate predetermined forms and structures featuring distinct pore architectures. The objective of this study is to investigate the influences of different pore geometries and their orientation with respect to the compressive loading direction on mechanical responses of scaffolds. Plastic models of scaffolds with cubic and hexagonal unit cells were fabricated by three-dimensional (3-D) printing. An in situ imaging technique was utilized to study the progressive compressive deformation of the scaffold models. In both cubic and hexagonal geometries, organized buckling patterns relevant... 

    Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs)

    , Article Key Engineering Materials, 6 November 2011 through 9 November 2011 ; Volume 493-494 , November , 2012 , Pages 902-908 ; 10139826 (ISSN) ; 9783037852552 (ISBN) Fayyazbakhsh, F ; Solati Hashjin, M ; Shokrgozar, M. A ; Bonakdar, S ; Ganji, Y ; Mirjordavi, N ; Ghavimi, S. A ; Khashayar, P ; Sharif University of Technology
    2012
    Abstract
    Bone Tissue Engineering (BTE) composed of three main parts: scaffold, cells and signaling factors. Several materials and composites are suggested as a scaffold for BTE. Biocompatibility is one of the most important property of a BTE scaffold. In this work synthesis of a novel nanocomposite including layered double hydroxides (LDH) and gelatin is carried out and its biological properties were studied. The co-precipitation (pH=11) method was used to prepare the LDH powder, using calcium nitrate, Magesium nitrate and aluminum nitrate salts as starting materials. The resulted precipitates were dried. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron... 

    Determination of reflectance optical sensor array configuration using 3-layer tissue model and Monte Carlo simulation

    , Article IFMBE Proceedings, 20 June 2011 through 23 June 2011 ; Volume 35 IFMBE , 2011 , Pages 424-427 ; 16800737 (ISSN) ; 9783642217289 (ISBN) Jumadi, N. A ; Gan, K. B ; Mohd Ali, M. A ; Zahedi, E ; Sharif University of Technology
    2011
    Abstract
    A new reflectance optical sensor array for locating fetal signal transabdominally has been determined in this study. The selection of optical sensor array is based on the highest Irradiance (μW/m2) value estimated on respected detectors. A three-layer semi-infinite tissue model which consists of maternal, amniotic fluid sac and fetal tissues is employed to study the optical sensor array configuration. By using statistical error approach, the number of rays injected to the system can be set to 1 million rays with ±3.2% of simulation error. The simulation results obtained from Monte Carlo technique reveal that diamond configuration is the most suitable configuration of reflectance optical... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, 26 November 2014 through 28 November 2014 ; November , 2014 , Pages 40-43 ; 9781479974177 (ISBN) Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two... 

    Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses

    , Article Materials and Design ; Volume 88 , 2015 , Pages 924-931 ; 02641275 (ISSN) Tamjid, E ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Design and development of biodegradable scaffolds with highly uniform and controlled internal structure that stimulate tissue regeneration are the focus of many studies. The aim of this work is to apply a modified three-dimensional (3D) printing process to fabricate polymer-matrix composites with controlled internal architecture. Computationally-designed plaster molds with various pore sizes in the range of 300-800. μm were prepared by employing 3D printing of a water-based binder. The molds were converted to ε-polycaprolactone (PCL) and PCL/bioactive glass (BG) composite scaffolds by solvent casting and freeze drying methods. Optical and electron microscopy studies revealed that the pore... 

    A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 1 , November , 2015 ; 09601317 (ISSN) Shamloo, A ; Amirifar, L ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be... 

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Manufacturing and Characterization of Bone Scaffold Based on TCP

    , M.Sc. Thesis Sharif University of Technology Gorgin Karaji, Zahra (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Bone scaffolds are combinations of several materials, for achieving suitable properties and usage for replacing with defected bone. In this study, TCP/Agarose scaffolds are fabricated by two different approaches. The first one is using polymer sponge and gel casting technique and the other one is using foaming agent in order to obtain scaffolds with same porosity. The results show that in spite of same structure and porosity, scaffolds have different mechanical properties due to their different morphologies. Compressive strength of the scaffolds which were fabricated using polymer sponge method is 2.25MPa and elastic modulus is 56.8MPa. After coating with Agarose, compressive strength... 

    Modeling of the Mechanical Behavior of Rapid Prototyped Scaffolds Based on Their Pore Architecture and Introducing a Prototyping Method to Produce Ceramic Scaffolds

    , Ph.D. Dissertation Sharif University of Technology Amirkhani, Soodeh (Author) ; Bagheri, Reza (Supervisor) ; Baghaban Eslaminejad, Mohamad Reza (Supervisor)
    Abstract
    Mechanical behavior of tissue engineering scaffolds plays a key role in their biological performance; however the effect of microstructural features on mechanical behavior of such scaffolds is still under investigation. The objective of this study was to investigate the influence of pore architecture and relative density on mechanical behavior of rapid prototyped scaffolds. In this regard, scaffolds with different cubic, hexagonal and trigonal unit cells were designed. These unit cells were repeated in different arrangements in 3D space to produce different nodal connectivities. The internal dimension of pores varied from 500 to 600 μm. Plastic models of scaffolds then fabricated by 3D... 

    Feasibility Study of Culturing and Differentiating Mesenchymal Stem Cells to Smooth Muscle Cells in Nanostructured PCL Hybrid Scaffold

    , M.Sc. Thesis Sharif University of Technology Moghadasi, Samaneh (Author) ;
    Abstract
    Tissue engineering is an interdisciplinary field that incorporates principles of engineering with the life sciences. Tissue engineering consists of three principle; cells, scaffolds for cells expansion and growth factors. These factors together can help tissue engineers to provide appropriate microenvironments for directing special cells behavior.
    Fibrous scaffolds have found many applications in tissue engineering due to their nanometer dimensions and high surface to volume ratio. Fibrous scaffolds can impart mechanical strength, structure for cell attachment and act as reservoirs for biomolecule delivery in much a same way as the natural fibrous components of the extracellular... 

    Fabrication and Characterization of Thermoplastic Starch Based Nanocomposite for Bone Scaffold

    , M.Sc. Thesis Sharif University of Technology Mahdieh, Zahra (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    This project aimed to fabricate the bone scaffolds with applying thermoplastic starch-based nano-biocomposites. The starting materials for this scaffold are as follows: thermoplastic starch, ethylene vinyl alcohol as the polymer matrix and nanoforsterite as the ceramic reinforcing phase. Furthermore, vitamin E was used as antioxidant for preserving starch against thermo-mechanical degradations. Likewise, 3D pore structure was developed using azo-dicarbonamide and water in injection moulding process. With blending thermoplastic starch and ethylene vinyl alcohol, some thermoplastic starch’s properties including degradation rate and water absorption were modified. In addition, having...