Loading...
Search for: transmission-electron-microscopy
0.01 seconds
Total 433 records

    Fabrication localized surface plasmon resonance sensor chip of gold nanoparticles and detection lipase-osmolytes interaction

    , Article Applied Surface Science ; Vol. 314, issue , 2014 , Pages 138-144 ; ISSN: 01694332 Ghodselahi, T ; Hoornam, S ; Vesaghi, M. A ; Ranjbar, B ; Azizi, A ; Mobasheri, H ; Sharif University of Technology
    Abstract
    Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H)... 

    Enhancement of efficient Ag-S/TiO2 nanophotocatalyst for photocatalytic degradation under visible light

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 23 , 2014 , Pages 9578-9586 ; ISSN: 08885885 Feilizadeh, M ; Vossoughi, M ; Zakeri, S. M. E ; Rahimi, M ; Sharif University of Technology
    Abstract
    A new photocatalyst (Ag-S/PEG/TiO2) was synthesized by adding polyethylene glycol (PEG) to an efficient Ag-S/TiO2 photocatalyst, to obtain a photocatalyst that is highly active under visible light. In addition to Ag-S/PEG/TiO2, Ag-S/TiO2 and pure TiO2 were prepared to compare their properties and activities. Specifically, the morphologies and microstructures of the nanophotocatalysts were characterized by means of powder X-ray diffraction (XRD), N2 adsorption-desorption measurements, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy,... 

    Pulsed laser irradiation for environment friendly reduction of graphene oxide suspensions

    , Article Applied Surface Science ; Vol. 301 , May , 2014 , pp. 183-188 ; ISSN: 01694332 Ghadim, E. E ; Rashidi, N ; Kimiagar, S ; Akhavan, O ; Manouchehri, F ; Ghaderi, E ; Sharif University of Technology
    Abstract
    Graphene oxide (GO) sheets were synthesized through a modified Hummers' method. Using high resolution transmission electron microscopy the thickness of the GO sheets in a multilayer structure of stacked GO sheets was found ∼0.8 nm. A nanosecond pulsed laser (with wavelength of 532 nm and average power of 0.3 W) was applied for effective and environment friendly reduction of the GO sheets in an ammonia solution (pH ∼9) at room temperature conditions. The deoxygenation of the GO sheets by the pulsed laser reduction method was confirmed by using UV-visible, Fourier transform infrared, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis. Based on XPS analysis, the O/C ratio of... 

    A comprehensive study on the microstructure of high strength low alloy pipeline welds

    , Article Journal of Alloys and Compounds ; Vol. 597 , June , 2014 , pp. 142-147 ; ISSN: 09258388 Beidokhti, B ; Kokabi, A. H ; Dolati, A ; Sharif University of Technology
    Abstract
    The microstructural characteristic of HSLA welds containing different amounts of titanium were evaluated carefully. It was observed that the microstructure of welds consisted of ferrite with mixed morphologies, and small amounts of pearlite and martensite-austenite micro-constituents. Because of insufficient time for diffusion of carbon, formation of pearlite lamellae could not be completed in the weld region. Martensite was formed from carbon enrichment of austenite during nucleation and growth of acicular ferrite and bainitic ferrite. While coarse manganese sulfide particles had weak interface strength with matrix and formed some micro-fissures; increasing titanium amount of welds... 

    Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation

    , Article Applied Catalysis A: General ; Vol. 475 , April , 2014 , pp. 55-62 ; ISSN: 0926860X Bagherzadeh, M ; Zare, M ; Salemnoush, T ; Ozkar, S ; Akbayrak, S ; Sharif University of Technology
    Abstract
    A novel organic-inorganic hybrid heterogeneous catalyst system was obtained from the reaction of the molybdenum(VI) complex of salicylidene 2-picoloyl hydrazone with mesoporous silica containing 3-chloropropyl groups prepared by a direct synthetic approach involving hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 3-chloropropyltrimethoxysilane in the presence of the triblock copolymer P123 as template under acidic conditions. Characterization of the functionalized materials by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), N2 adsorption/desorption, FT-IR and UV-Vis spectroscopy, and thermogravimetric... 

    Super-hydrophilic characteristic of thermochemically prepared CdS nanocrystals

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 58 , April , 2014 , pp. 146-152 ; ISSN: 13869477 Marandi, M ; Taghavinia, N ; Babaei, A ; Sharif University of Technology
    Abstract
    CdS nanocrystals were thermochemically (thermally activated) synthesized thorough the reaction between CdSO4 and Na2S 2O3 in an aqueous solution. Thioglycolic Acid (TGA) was used as the capping agent and catalyst of the reaction. The method was based on heat activated dissociation of Na2S2O3 and controllable release of S and free electrons in the solution. CdS NCs were formed by heating the sample solution at 96 C for 1 h. The results of optical spectroscopy and transmission electron microscopy demonstrated round shape NCs with sizes about 3.0 nm. The nanocrystals were also luminescent and represented a broad emission with a peak located at 515 nm and FWHM of 160 nm. Several samples were... 

    Growth kinetics of Al-Fe intermetallic compounds during annealing treatment of friction stir lap welds

    , Article Materials Characterization ; Vol. 90 , April , 2014 , pp. 121-126 ; ISSN: 10445803 Movahedi, M ; Kokabi, A. H ; Seyed Reihani, S. M ; Najafi, H ; Farzadfar, S. A ; Cheng, W. J ; Wang, C. J ; Sharif University of Technology
    Abstract
    In this study, we explored the growth kinetics of the Al-Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state.... 

    Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol-gel technique

    , Article Ceramics International ; Vol. 40, Issue 3 , 2014 , pp. 4193-4201 ; ISSN: 02728842 Naghibi, S ; Faghihi Sani, M. A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    TiO2 nanoparticles were synthesized by hydrothermal assisted sol-gel technique. The preparation parameters including pH value, the amount of water, titanium tetra isopropoxide content, temperature and time of hydrothermal process were investigated by Taguchi statistical experiments to determine the influence of synthesizing variables on the optimal conditions and to realize the highest degree of crystallinity or smallest crystallite size. X-ray diffraction (XRD) analysis and direct band gap energy (Eg) values, measured via diffuse reflectance spectra (DRS), proved that all the samples consist of anatase as a unique phase. Transmission electron microscopy (TEM) and specific surface area... 

    A study on natural aging behavior and mechanical properties of friction stir-welded AA6061-T6 plates

    , Article International Journal of Advanced Manufacturing Technology ; Vol. 71, issue. 5-8 , 2014 , pp. 933-941 ; ISSN: 02683768 Jamshidi Aval, H ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    Mechanical properties, microstructural events, residual stresses, and aging behavior of friction stir-welded AA6061-T6 were investigated in this work. Microstructural and mechanical characterizations of the friction stir-welded joints in as-welded and post-welded conditions were made by means of optical metallography, transmission electron microscopy, X-ray diffraction for determination of residual stresses, tensile testing, and hardness measurements. It was found that weld strength and hardness variations after welding are mainly dependent on the imposed heat input per unit length. Besides, the kinetics of natural aging in the welded samples was found to be noticeable within the first 14... 

    Development of sol-gel-derived multi-wall carbon nanotube/hydroxyapatite nanocomposite powders for bone substitution

    , Article Journal of Composite Materials ; Vol. 48, issue. 4 , February , 2014 , pp. 483-489 ; ISSN: 00219983 Hooshmand, T ; Abrishamchian, A ; Najafi, F ; Mohammadi, M ; Najafi, H ; Tahriri, M ; Sharif University of Technology
    Abstract
    Carbon nanotubes with unique physical and mechanical properties have shown great potential for biological applications, including tissue engineering and mimicking the structure and properties of human bones. In the present work, sol-gel synthesized nanocomposite powder of multi-wall carbon nanotube/hydroxyapatite characterized using field-emission scanning electron microscopy, transmission electron microscope, X-ray diffraction, Fourier transform infra-red spectroscopy and thermal analyses. The results show homogenous dispersion of nanotube in well-crystallized hydroxyapatite ceramic matrix. Scanning electron microscopy and transmission electron microscope observations show the sodium... 

    Solvothermal synthesis of CuMS2 (M=A1, In, Fe) nanoparticles and effect of coordinating solvent on the crystalline structure

    , Article Scientia Iranica ; Volume 21, Issue 6 , 2014 , Pages 2468-2478 ; ISSN: 10263098 Vahidshad, Y ; Ghasemzadeh, R ; Zad, A. I ; Mirkazemi, S. M ; Masoud, A ; Sharif University of Technology
    Abstract
    CuMS2 (M=A1, In, Fe) ternary compounds were synthesized via the facile polyol method in autoclave. Depending on the functional groups of solvent and surfactant, the structure of the nanocrystals can be controlled in the form of wurtzite or chalcopyrite. The chalcopyrite structure was obtained when the precursors solved in the mixture of diethylene glycol, polyethylene glycol 600 and ammonium hydroxide. When the solvent was replaced by ethylene diamine, the wurtzite was obtained along with chalcopyrite (polytypism). The products were characterized by X-Ray Diffraction (XRD) for analysis of structural properties, Transmission Electron Microscopy (TEM) for studying morphological... 

    CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode

    , Article Applied Surface Science ; Vol. 320, issue , 30 November , 2014 , pp. 772-779 ; ISSN: 01694332 Yousefzadeh, S ; Faraji, M ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    CdS/TiO2/graphene (CTG) nanocomposite thin films were synthesized by a facile production route. The TiO2/graphene (TG) nanocomposite was initially fabricated by sol-gel method in such a way that TiO2 nanoparticles loaded on graphene oxide (GO) sheet via photocatalytic process. Then, CdS nanoparticles were deposited on the TG thin film by successive ion layer adsorption and reaction process (SILAR) approach. Based on atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the TG thin film possessed a larger surface area as compared with the pure TiO2 thin film due to presence of graphene sheet. UV/visible spectroscopy exhibited... 

    Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: A feed forward neural network modelling

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Vol. 29 , January , 2014 , pp. 317-327 ; ISSN: 17516161 Rajabzadeh, G ; Salehi, S ; Nemati, A ; Tavakoli, R ; Solati Hashjin, M ; Sharif University of Technology
    Abstract
    Despite brilliant properties of glass ionomer cement (GIC), its weak mechanical property poses an obstacle for its use in medical applications. The present research aims to formulate hydroxyapatite/yttria-stabilized zirconia (HA/YSZ) in the composition of GIC to enhance mechanical properties and to improve fluoride release of GIC. HA/YSZ was synthesized via a sol-gel method and characterized by applying X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-emission spectroscopy (XPS) and simultaneous thermal analysis (STA) along with transmission electron microscopy (TEM) methods. The synthesized nanocomposite was mixed with GIC at a fixed composition of 5.... 

    Effect of acidic and basic solutions on electron beam irradiated epoxy nanocomposites containing nanoclay, CaCO3 and TiO2 nanoparticles

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Vol. 24, issue. 4 , 2014 , pp. 745-752 ; ISSN: 1574-1443 Razavi, S. M ; Ahmadi, S. J ; Rahmani Cherati, P ; Sharif University of Technology
    Abstract
    High chemical resistance is the main prerequisites for materials that are intended to be utilized in usages such as chemicals storage containers production. Nanocomposites of epoxy resin containing nanoclay, CaCO3 and TiO2 nanoparticles were prepared and their chemical resistance was studied. Moreover, the effect of electron beam irradiation was explored. TEM micrographs proved the dispersion of nano-size particles in the polymeric matrix. XRD patterns showed an exfoliated structure for nanocomposite containing 1 % nanoclay and intercalated structures for nanocomposites with higher nanoclay contents. SEM showed the pits that appeared in epoxy/nanoclay structure due to chemical corrosion.... 

    In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine

    , Article Sensors and Actuators, B: Chemical ; Vol. 196 , June , 2014 , pp. 582-588 ; ISSN: 09254005 Asadian, E ; Shahrokhian, S ; Zad, A. I ; Jokar, E ; Sharif University of Technology
    Abstract
    The present paper demonstrates the capability of narrow graphene nanoribbons (GNRs) in constructing new sensing platforms. Graphene nanoribbons have been synthesized via a simple solvothermal route through unzipping of carbon nanotubes, which was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy analysis. These narrow carbon sheets were used to form a composite film by in-situ electro-polymerization with aniline. The produced graphene nanoribbon/polyaniline (GNR/PANI) composite film showed impressive performance in electrochemical determination of dobutamine (DBT). Under optimal conditions, in comparison to... 

    Synthesis and electrochemical characterization of sol-gel-derived RuO 2/carbon nanotube composites

    , Article Journal of Solid State Electrochemistry ; Vol. 18, Issue 4 , April , 2014 , pp. 993-1003 ; Online ISSN: 1433-0768 Kahram, M ; Asnavandi, M ; Dolati, A ; Sharif University of Technology
    Abstract
    Ruthenium oxide was coated on multiwalled carbon nanotubes (MWCNTs) to obtain nanocomposite electrode which has a good response to the pH. To synthesize this electrode, gold and cobalt were coated on a stainless steel 304 substrates, respectively, and then, vertically aligned carbon nanotubes were grown on the prepared substrates by chemical vapor deposition. Gold reduced activity of the stainless steel, while cobalt served as a catalyst for growth of the carbon nanotube. Ruthenium oxide was then coated on MWCNTs via sol-gel method. At last, different techniques were used to characterize the properties of synthesized electrode including scanning electron microscopy (SEM), transmission... 

    Microstructure and compressibility of SiC nanoparticles reinforced Cu nanocomposite powders processed by high energy mechanical milling

    , Article Ceramics International ; Volume 40, Issue 1 PART A , January , 2014 , Pages 951-960 ; ISSN: 02728842 Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Cu/SiC nanocomposite powders with homogeneously distributed nanosize SiC particles were produced by high energy mechanical milling (MM). Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and micro-hardness and density measurements were performed to understand the effects of microstructure and hardness on compaction behavior during MM. The effects of SiC nanoparticle content and mechanical milling time on apparent density (AD) and tap density (TD) of the nanocomposite powders were systematically investigated. The Hausner ratio (HR), defined as TD to AD, were estimated to evaluate friction between the particles. Increasing MM duration and SiC content resulted... 

    Effect of solvent on nanostructure and luminescence properties of combustion synthesized Eu3+ doped yttria

    , Article Nanoscience and Nanotechnology Letters ; Vol. 6, issue. 8 , August , 2014 , p. 692-696 Rafiaei, S. M ; Kim, A ; Shokouhimehr, M ; Sharif University of Technology
    Abstract
    Y2 O3:Eu3+ nanostructures with bright red emitting phosphors have been synthesized by the combustion method using water and water/ethanol mixture as solvents. The effect of the solvents on nanostructure and luminescence properties of combustion synthesized Y2 O3:Eu3+ was explored. The synthesized nanostructures were calcined at 400 ° C and 1000 ° C to remove the organic phases and enhance the crystallinity. The crystal structures were characterized by an X-ray diffractometer and the particle size and morphology of the synthesized nanostructures were studies using a field emission scanning electron microscope and a transmission electron microscope. We found that the solvent choice has a... 

    Low temperature synthesis of carbonate-free barium titanate nanoscale crystals: Toward a generalized strategy of titanate-based perovskite nanocrystals synthesis

    , Article Journal of the American Ceramic Society ; Vol. 97, issue. 7 , 2014 , pp. 2027-2031 Ashiri, R ; Moghtada, A ; Shahrouzianfar, A ; Ajami, R ; Sharif University of Technology
    Abstract
    Synthesis temperature and purity of perovskite materials are key challenges facing the scientific community. This work aims to address these challenges by developing an innovative low temperature synthesis pathway for preparation of carbonate-free perovskite nanocrystals. The method is based on an ultrasound-Assisted wet chemical processing method. Nanocrystals are characterized and observed by X-ray diffraction (XRD), field-emission scanning electron microscopy and high-resolution transmission electron microscopy techniques. XRD studies show that very fine BaTiO3 nanocrystals (<11 nm) free from any by-products such as BaTi2O5 and BaCO3 are synthesized at 50°C. Moreover, the method developed... 

    Investigation the structural and magnetic properties of FINEMET type alloy produced by mechanical alloying

    , Article Advanced Materials Research ; Vol. 970, issue , 2014 , p. 252-255 Gheiratmand, T ; Siyani, S. M ; Hosseini, H. R. M ; Davami, P ; Sharif University of Technology
    Abstract
    In this research, FINEMET alloy with composition of Fe73.5Si13.5B9Nb3Cu1 was produced by mechanical alloying from elemental powders. The effect of milling time on the magnetic and structural properties of alloy has been investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometery. The results showed that milling for 53 hr leads to the formation of Fe supersaturated solid solution which includes Si, B and Nb atoms with mean crystallite size of ~30 nm. The shift of the main peak of Fe to the higher angles indicated that Si and B atoms dissolve in the Fe solid solution, at primary stage of mechanical alloying, up to the...