Loading...
Search for: triangular
0.009 seconds
Total 56 records

    Prescribed-Time control with linear decay for nonlinear systems

    , Article IEEE Control Systems Letters ; Volume 6 , 2022 , Pages 313-318 ; 24751456 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this letter, a new notion of stability is introduced, which is called triangular stability. A system is called triangularly stable if the norm of its state vector is bounded by a decreasing linear function of time such that its intersection point with the time axis can be arbitrarily commanded by the user. Triangular stability implies prescribed-time stability, which means that the nonlinear system is converged to zero equilibrium at an arbitrary finite time. A prescribed-time controller with guaranteed triangular stability is developed for normal form nonlinear systems with uncertain input gain, which is able to reject the disturbances and unmodeled dynamics. Numerical simulations are... 

    Experimental examination of utilizing novel radially grooved surfaces in the evaporator of a thermosyphon heat pipe

    , Article Applied Thermal Engineering ; Volume 169 , 2020 Bahmanabadi, A ; Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The application of heat pipes with flat evaporators in cooling electronic devices has attracted a lot of attention in recent years. Increasing the rate of heat transfer in their evaporator by utilizing structured surfaces is considered as a prominent method for reducing the thermal resistance of the heat pipes. In this study, the performance of a thermosyphon heat pipe with novel radially rectangular-grooved and radially inclined triangular-grooved evaporator surfaces was evaluated experimentally. It is hypothesized that the radial grooves may enhance the performance by inducing rotational motions and increasing the heat transfer coefficients. Based on the results, the optimum filling ratio... 

    Thermo-hydraulic performance enhancement of nanofluid-based linear solar receiver tubes with forward perforated ring steps and triangular cross section; a numerical investigation

    , Article Applied Thermal Engineering ; Volume 169 , March , 2020 Mahmoudi, A ; Fazli, M ; Morad, M. R ; Gholamalizadeh, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Cylindrical pipes are installed to a line-focusing solar system with a linear receiver tube for transmitting thermal energy to the working fluid. In this study, the effects of a novel forward ring step inside circular pipes on the heat transfer performance of linear solar receiver tubes were investigated using computational fluid dynamics. The rings are perforated, and their cross section is triangular. Although the applied heat flux is consistent with a solar collector with a linear receiver tube, the analysis can be performed for any given heat flux distribution on circular pipes. The model was verified by comparing the predicted Nusselt numbers to those of the Gnielinski correlation, and... 

    Thermal-exergetic behavior of triangular vortex generators through the cylindrical tubes

    , Article International Journal of Heat and Mass Transfer ; Volume 151 , 2020 Pourhedayat, S ; Pesteei, S. M ; Ebrahimi Ghalinghie, H ; Hashemian, M ; Aqeel Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, new arrangements of triangular winglet as a turbulator are numerically studied through a cylindrical tube. Triangular winglets are commonly placed on one side of a rectangular plate and inserted inside the tube. However, in present work, the winglets are located on both sides of the rectangular plate to further enhance the thermal performance of the fluid flow through the tube. Both backward and forward configurations of the winglets are analysed. Moreover, despite the importance of “latitudinal pitch of the winglets” and “winglet-plate angle” no investigation has been evaluated these parameters which will be evaluated in this work. Moreover, as no exergetic evaluation has... 

    Effects of after-body on the FIV of a right-angle triangular cylinder in comparison to circular, square, and diamond cross-sections

    , Article Ships and Offshore Structures ; Volume 14, Issue 6 , 2019 , Pages 589-599 ; 17445302 (ISSN) Tamimi, V ; Naeeni, S. T. O ; Zeinoddini, M ; Seif, M. S ; Dolatshahi Pirooz, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This in-water experimental study deals with the effects of the after-body on the FIV response of round and sharp edge cylinders. Different circular, square, diamond, and right-angle isosceles triangular cross-sections are investigated. The triangular cylinder is examined in four different symmetrical and unsymmetrical configurations with respect to the incident flow. The current towing tank experiments form a basis for the feasibility study of the isosceles triangular cylinders for FIV energy converters. The results indicate that the cylinders with a flat side perpendicular to the flow have a galloping type of response. In contrast, the cylinders with a sharp vertex pointing the flow show a... 

    Design and test of an astigmatism compensated dynamical stable ring resonator for a subjoule class Nd:YAG laser without external elements

    , Article Optical Engineering ; Volume 58, Issue 2 , 2019 ; 00913286 (ISSN) Razzaghi, D ; Rezanejad, M ; Shayganmanesh, M ; Gohari, N ; Sharif University of Technology
    SPIE  2019
    Abstract
    An astigmatism compensated isosceles triangular ring resonator is designed and tested for a subjoule class Nd:YAG laser, considering the thermal lensing effects. The ABCD approach is used and the laser rod is considered as a lens like media whose optical power is induced by dissipated heat in the rod. The beam spot size, divergence angle, and some other parameters were studied for both sagittal and tangential planes and a minimal astigmatic configuration is designed applying dynamic stability condition. It is shown practically that the designed resonator emits a circular TEM00 Gaussian beam (using an aperture). Comparative studies were also done considering a linear resonator especially for... 

    Duality in bipolar triangular fuzzy number quadratic programming problems

    , Article Proceedings of the International Conference on Intelligent Sustainable Systems, ICISS 2017, 7 December 2017 through 8 December 2017 ; 19 June , 2018 , Pages 1236-1238 ; 9781538619599 (ISBN) Ghorbani Moghadam, K ; Ghanbari, R ; Mahdavi Amiri, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    We discuss how to solve bipolar fuzzy quadratic programming problems, where the parameters are bipolar triangular fuzzy numbers, making use of linear ranking functions. Also, we explore some duality properties of bipolar triangular fuzzy number quadratic programming problem (BTFNQPP). © 2017 IEEE  

    Optomechanical coupling strength in various triangular phoxonic crystal slab cavities

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 6 , 2018 , Pages 1390-1396 ; 07403224 (ISSN) Aram, M. H ; Khorasani, S ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Enhancement of interaction between optical and mechanical fields is one of the main goals of cavity optomechanics as a newly founded physics context. If the coupling rate between these fields exceeds their decay rates from the cavity, then preparation of quantum entangled states between photons of the electromagnetic field and phonons of the mechanical field becomes feasible. Among different types of cavities, phoxonic crystal (PxC) cavities have attracted attention in recent years because they can confine optical and mechanical fields simultaneously. In this paper, we introduce four PxC slabs which exhibit simultaneous photonic and phononic bandgaps. All of these crystals have a triangular... 

    Effects of after-body on the FIV of a right-angle triangular cylinder in comparison to circular, square, and diamond cross-sections

    , Article Ships and Offshore Structures ; 2018 ; 17445302 (ISSN) Tamimi, V ; Naeeni, T. O ; Zeinoddini, M ; Seif, M. S ; Dolatshahi Pirooz, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    This in-water experimental study deals with the effects of the after-body on the FIV response of round and sharp edge cylinders. Different circular, square, diamond, and right-angle isosceles triangular cross-sections are investigated. The triangular cylinder is examined in four different symmetrical and unsymmetrical configurations with respect to the incident flow. The current towing tank experiments form a basis for the feasibility study of the isosceles triangular cylinders for FIV energy converters. The results indicate that the cylinders with a flat side perpendicular to the flow have a galloping type of response. In contrast, the cylinders with a sharp vertex pointing the flow show a... 

    Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium

    , Article Physics of Fluids ; Volume 29, Issue 6 , 2017 ; 10706631 (ISSN) Rokhforouz, M. R ; Akhlaghi Amiri, A ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. Thiswork presents the results of a newpore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with... 

    Precision of direction of arrival (DOA) estimation using novel three dimensional array geometries

    , Article AEU - International Journal of Electronics and Communications ; Volume 75 , 2017 , Pages 35-45 ; 14348411 (ISSN) Poormohammad, S ; Farzaneh, F
    Elsevier GmbH  2017
    Abstract
    Numerous methods for direction of arrival (DOA) estimation, used in smart antennas have been already reported in previous studies. The precision of DOA estimation depends on the choice of the algorithm and the geometrical configuration of the antenna array. In this work, the performance of new geometrical configurations, i.e. 2D with equal area and 3D with equal volume including circular, square, triangular, hexagonal and star geometries, with equal number of antenna elements, are examined and compared to each other to find the most proper geometry. Monte-Carlo simulations are performed to evaluate the DOA precision of the proposed arrays using the MUSIC algorithm. It is shown that in three... 

    Dispersion and deposition of nanoparticles in microchannels with arrays of obstacles

    , Article Microfluidics and Nanofluidics ; Volume 21, Issue 4 , 2017 ; 16134982 (ISSN) Banihashemi Tehrani, S. M ; Moosavi, A ; Sadrhosseini, H ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Air pollutants are among the hazardous materials for human health. Therefore, many scientists are interested in removing particles from the carrier gas. In this study, flow of air and airborne particles through the virtual multi-fibrous filters that consist of different fiber cross-sectional shapes and arrangements is simulated where particle deposition and filtration performance are studied. Regular and irregular arrangements of fibers with the circular, elliptical, and equilateral triangular cross sections have been considered. Effects of important parameters such as solid volume fraction, internal structure, and filter thickness on particle collection efficiency and pressure drop are... 

    CFD modeling of natural convection in right-angled triangular enclosures

    , Article International Journal of Heat and Technology ; Volume 34, Issue 3 , 2016 , Pages 503-506 ; 03928764 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Edizioni ETS  2016
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in right-angled triangular enclosures filled with water considering different aspect ratios. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1 × 104 to 1 × 107 . It is shown that increasing aspect ratio of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of aspect ratio using simulation results  

    Comparing calculation methods of storey stiffness to control provision of soft storey in seismic codes

    , Article Earthquake and Structures ; Volume 11, Issue 1 , 2016 , Pages 1-23 ; 20927614 (ISSN) Tabeshpour, M. R ; Noorifard, A ; Sharif University of Technology
    Techno Press  2016
    Abstract
    Numerous buildings have been damaged or destroyed in previous earthquakes by developing soft storey. Almost all the seismic codes have provisions to prevent soft storey in structures, most of them have recommended the ratio of stiffness between adjacent storeys, but none of them has proposed the method to calculate the storey stiffness. On the other hand a great number of previous researches on stiffness have been focused on approximate methods and accurate methods by using analytical softwares have been almost neglected. In this study, six accurate methods for calculating the storey stiffness have been studied on 246 two-bay reinforced concrete frames. It is shown with the results of the... 

    Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 104 , 2016 , Pages 243-252 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Akbari, A ; Sharif University of Technology
    Elsevier, B.V  2016
    Abstract
    Centrifugal microfluidics or the Lab on a CD (LOCD) has developed vast applications in biomedical researches and analyses. Fluid mixing is an application of the LOCD. In this paper, multiple centrifugal micromixers were simulated. Various parameters were originally presumed to have an effect on mixing performance. These parameters include inlet angle, angular velocity, cross-sectional profile, perpendicular length ratio and the number of channels in series. They were each analyzed through simulations. It was gathered that the inlet angle does not significantly affect the mixing quality. Increasing angular velocity steadily increases mixing quality for all geometries. The vertical triangular... 

    Galerkin and Generalized Least Squares finite element: A comparative study for multi-group diffusion solvers

    , Article Progress in Nuclear Energy ; Volume 85 , 2015 , Pages 473-490 ; 01491970 (ISSN) Hosseini, S. A ; Saadatian Derakhshandeh, F ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract In this paper, the solution of multi-group neutron/adjoint equation using Finite Element Method (FEM) for hexagonal and rectangular reactor cores is reported. The spatial discretization of the neutron diffusion equation is performed based on two different Finite Element Methods (FEMs) using unstructured triangular elements generated by Gambit software. Calculations are performed using Galerkin and Generalized Least Squares FEMs; based on which results are compared. Using the power iteration method for the neutron and adjoint calculations, the neutron and adjoint flux distributions with the corresponding eigenvalues are obtained. The results are then validated against the valid... 

    Conditions on decomposing linear systems with more than one matrix to block triangular or diagonal form

    , Article IEEE Transactions on Automatic Control ; Volume 60, Issue 1 , May , 2015 , Pages 233-239 ; 00189286 (ISSN) Mesbahi, A ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results  

    Recursive linear and differential cryptanalysis of ultralightweight authentication protocols

    , Article IEEE Transactions on Information Forensics and Security ; Volume 8, Issue 7 , 2013 , Pages 1140-1151 ; 15566013 (ISSN) Ahmadian, Z ; Salmasizadeh, M ; Aref, M. R ; Sharif University of Technology
    2013
    Abstract
    Privacy is faced with serious challenges in the ubiquitous computing world. In order to handle this problem, some researchers in recent years have focused on design and analysis of privacy-friendly ultralightweight authentication protocols. Although the majority of these schemes have been broken to a greater or lesser extent, most of these attacks are based on ad-hoc methods that are not extensible to a large class of ultralightweight protocols. So this research area still suffers from the lack of structured cryptanalysis and evaluation methods. In this paper, we introduce new frameworks for full disclosure attacks on ultralightweight authentication protocols based on new concepts of... 

    Continuous size-based focusing and bifurcating microparticle streams using a negative dielectrophoretic system

    , Article Microfluidics and Nanofluidics ; Volume 14, Issue 1-2 , 2013 , Pages 265-276 ; 16134982 (ISSN) Hemmatifar, A ; Saidi, M. S ; Sadeghi, A ; Sani, M
    2013
    Abstract
    Dielectrophoresis (DEP) is an electrokinetic phenomenon which is used for manipulating micro- and nanoparticles in micron-sized devices with high sensitivity. In recent years, electrode-based DEP by patterning narrow oblique electrodes in microchannels has been used for particle manipulation. In this theoretic study, a microchannel with triangular electrodes is presented and a detailed comparison with oblique electrodes is made. For each shape, the behavior of particles is compared for three different configurations of applied voltages. Electric field, resultant DEP force, and particle trajectories for configurations are computed by means of Rayan native code. The separation efficiency of... 

    A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants

    , Article RSC Advances ; Volume 3, Issue 21 , 2013 , Pages 7726-7732 ; 20462069 (ISSN) Hormozi Nezhad, M. R ; Karami, P ; Robatjazi, H ; Sharif University of Technology
    2013
    Abstract
    Green and simple synthesis strategies have gained tremendous popularity for the production of anisotropically-shaped noble metallic nanoparticles. The long-term stability of the produced particles, the short timescale of the target reaction(s), as well as the use of non-toxic chemicals, are pivotal features of a useful green procedure. Herein we describe a simple and convenient wet-chemical approach to synthesize stable, non-toxic and water-soluble small gold nanotriangles (GNTs) and gold nanospheres (GNSs) in one step at room temperature, using Tween 20 and Tween 80, respectively. A high level of purity and monodispersity was obtained for the GNTs, in addition to an excellent colloidal...