Loading...
Search for: tube-length
0.007 seconds

    Optimized three-dimensional trapping of aerosols: The effect of immersion medium

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 32, Issue 7 , 2015 , Pages 1494-1498 ; 07403224 (ISSN) Taheri, S. M. R ; Madadi, E ; Sadeghi, M ; Reihani, S. N. S ; Sharif University of Technology
    OSA - The Optical Society  2015
    Abstract
    Optical tweezers have proven to be indispensable micromanipulation tools especially in aqueous solutions. Because of the significantly larger spherical aberration induced by the refractive index mismatch, trapping aerosols has always been cumbersome if not impossible. We introduce a simple but very efficient method for optimized aerosol trapping at a desired depth. We show that a wise selection of the immersion medium and the mechanical tube length not only enables trapping of objects that are known to be untrappable but also provides a way to tune the trappable depth range  

    Critical mass flow rate through capillary tubes

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010 ; Volume 1, Issue PARTS A, B AND C , 2010 , Pages 51-56 ; 08888116 (ISSN) ; 9780791849484 (ISBN) Nouri Borujerdi, A ; Javidmand, P ; Fluids Engineering Division ; Sharif University of Technology
    Abstract
    This paper presented a numerical study that predicts critical mass flow rate, pressure, vapor quality, and void fraction along a very long tube with small diameter or capillary tub under critical condition by the drift flux model. Capillary tubes are simple expansion devices and are necessary to design and optimization of refrigeration systems. Using dimensional analysis by Buckingham's π theory, some generalized correlations are proposed for prediction of flow parameters as functions of flow properties and tube sizes under various critical conditions. This study is performed under the inlet pressure in the range of 0.8 ≤ pin ≤ 1.5Mpa, subcooling temperature between 0 ≤ ΔTsub ≤10 °C. The... 

    Effect of vacancy defects on the fundamental frequency of carbon nanotubes

    , Article 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008, Sanya, 6 January 2008 through 9 January 2008 ; 2008 , Pages 1000-1004 ; 9781424419081 (ISBN) Pirmoradian, M ; Ahmadian, M. T ; Asempour, A ; Tajalli, S. A
    2008
    Abstract
    Carbon nanotubes are widely used in the design of nanosensors and actuators. Any defect in the manufactured nanotube plays an important role in the natural frequencies of these structures. In this paper, the effect of vacancy defects on the vibration of carbon nanotubes is investigated by using an atomistic modeling technique, called the molecular structural mechanics method. Vibration analysis is performed for armchair and zigzag nanotubes with cantilever boundary condition. The shift of the principal frequency of the nanotube with vacancy defect at different locations on the length is plotted. The results indicate that the frequency of the defective nanotube can be larger or smaller or...