Loading...
Search for: uv-irradiation
0.011 seconds

    Improvement of performance and fouling resistance of polyamide reverse osmosis membranes using acrylamide and TiO2 nanoparticles under UV irradiation for water desalination

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 11 , 2020 Asadollahi, M ; Bastani, D ; Mousavi, S. A ; Heydari, H ; Vaghar Mousavi, D ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    The purpose of this research is to explain the surface modification of fabricated polyamide reverse osmosis (RO) membranes using UV-initiated graft polymerization at different irradiation times (15, 30, 60, and 90 s) and various acrylamide concentrations (10, 20, and 30 g L−1). Also, coating of membranes surface with various concentrations of TiO2 nanoparticles (10, 20, 30, and 50 ppm) followed by the same UV irradiation times was investigated. After that, the membranes modification was done by grafting of acrylamide blended with TiO2 nanoparticles via UV irradiation. The characterization of membranes surface properties and their performance were systematically carried out. The results... 

    Laser irradiation for controlling size of TiO2-Zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide

    , Article Water Science and Technology ; Volume 80, Issue 5 , 2019 , Pages 864-873 ; 02731223 (ISSN) Abdollah, F ; Borghei, S. M ; Moniri, E ; Kimiagar, S ; Panahi, H. A ; Sharif University of Technology
    IWA Publishing  2019
    Abstract
    This study focused on the synthesis of TiO2-Zeolite nanocomposite through a sol-gel approach. The decrease in the size of the nanocomposite is considered a primary parameter to improve photocatalytic activity. In this regard, fabricated samples were exposed to laser irradiation (532 nm) for four different time intervals in order to investigate the size variation of the nanocomposite. FTIR, UV-Vis, XRD, DLS, SEM and EDX analyses were applied to characterize and determine the size of the products. An optimized nanocomposite sample, in term of the particle size, was used for photodegradation of 2,4-D herbicide from aqueous solution. Photodegradation was carried out under UV irradiation (12 W)... 

    Assembly of CeO 2-TiO 2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants

    , Article Journal of Hazardous Materials ; Volume 199-200 , 2012 , Pages 170-178 ; 03043894 (ISSN) Ghasemi, S ; Setayesh, S. R ; Habibi Yangjeh, A ; Hormozi Nezhad, M. R ; Gholami, M. R ; Sharif University of Technology
    2012
    Abstract
    CeO 2-TiO 2 nanoparticles were prepared by the sol-gel process using 2-hydroxylethylammonium formate as room-temperature ionic liquid and calcined at different temperatures (500-700°C). CeO 2-TiO 2-graphene nanocomposites were prepared by hydrothermal reaction of graphene oxide with CeO 2-TiO 2 nanoparticles in aqueous solution of ethanol. The photocatalysts were characterized by X-ray diffraction, BET surface area, diffuse reflectance spectroscopy, scanning electron microscopy, and Fourier transformed infrared techniques. The results demonstrate that the room-temperature ionic liquid inhibits the anatase-rutile phase transformation. This effect was promoted by addition of CeO 2 to TiO 2.... 

    Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers

    , Article Applied Surface Science ; Volume 258, Issue 7 , 2012 , Pages 2373-2377 ; 01694332 (ISSN) Omrani, A. A ; Taghavinia, N ; Sharif University of Technology
    2012
    Abstract
    A simple method has been demonstrated to grow silver nanoparticles on the surface of cellulose fibers. The preparation is based on photo-activation of surface by ultraviolet (UV) photons, followed by chemical reduction of silver nitrate. It is found that the concentration of silver nitrate in the solution is not a determining factor, while UV intensity affects the rate of initial growth and determines the final concentration of the loaded silver. We explain the phenomena based on a model including the number of reducing sites on the surface of cellulose fibers activated by UV photons, and a release mechanism that causes a slow rate of dissolution of silver back into the solution  

    UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 102, Issue 3 , March , 2011 , Pages 232-240 ; 10111344 (ISSN) Bardajee, G. R ; Pourjavadi, A ; Ghavami, S ; Soleyman, R ; Jafarpour, F ; Sharif University of Technology
    2011
    Abstract
    A highly swelling nanoporous hydrogel (NPH) was synthesized via UV-irradiation graft copolymerization of acrylic acid (AA) onto salep backbone and its application as a carrier matrix for colonic delivery of tetracycline hydrochloride (TH) was investigated. Optimized synthesis of the hydrogel was performed by the classic method. The swelling behavior of optimum hydrogel was measured in different media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric analysis (TGA/DTG/DTA). The study of the surface morphology of hydrogels using SEM showed a nanoporous (average pore size: about 350 nm) structure for the sample obtained under... 

    Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol

    , Article Carbon ; Volume 49, Issue 1 , January , 2011 , Pages 11-18 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2011
    Abstract
    Graphene oxide platelets synthesized by using a chemical exfoliation method were dispersed in a suspension of ZnO nanoparticles to fabricate ZnO/graphene oxide composite. Formation of graphene oxide platelets (with average thickness of ∼0.8 nm) hybridized by ZnO nanoparticles (with average diameter of ∼20 nm) was investigated. The 2D band in Raman spectrum confirmed formation of single-layer graphene oxides. The gradual photocatalytic reduction of the graphene oxide sheets in the ZnO/graphene oxide suspension of ethanol was studied by using X-ray photoelectron spectroscopy for different ultra violet (UV)-visible irradiation times. After 2 h irradiation, the relative concentration of the... 

    On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation

    , Article Applied Catalysis A: General ; Volume 389, Issue 1-2 , 2010 , Pages 60-67 ; 0926860X (ISSN) Bayati, M. R ; Moshfegh, A. Z ; Golestani Fard, F ; Sharif University of Technology
    2010
    Abstract
    Sulfur doped TiO2 layers containing nano/micro-sized pores were synthesized by micro-arc oxidation process. Effect of the applied voltage and the electrolyte composition on physical and chemical properties of the layers was investigated using SEM, AFM, XRD, XPS, and EDS techniques. A UV-vis spectrophotometer was also used to study optical properties of the layers. It was found that the doped layers were porous with a pore size of 40-170 nm. They consisted of anatase and rutile phases with varying fraction depending on the applied voltage and electrolyte concentration. Our XPS investigations revealed the existence of sulfur in the forms of S4+ and S6+ states which substituted Ti4+ in the... 

    Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction

    , Article Journal of Physical Chemistry C ; Volume 114, Issue 30 , July , 2010 , Pages 12955-12959 ; 19327447 (ISSN) Akhavan, O ; Abdolahad, M ; Esfandiar, A ; Mohatashamifar, M ; Sharif University of Technology
    2010
    Abstract
    TiO2 nanoparticles were physically attached to chemically synthesized single-layer graphene oxide nanosheets deposited between Au electrodes in order to investigate the electrical, chemical, and structural properties of the TiO2/graphene oxide composition exposed to UV irradiation. X-ray photoelectron spectroscopy showed that after effective photocatalytic reduction of the graphene oxide sheets by the TiO2 nanoparticles in ethanol, the carbon content of the reduced graphene oxides gradually decreased by increasing the irradiation time, while no considerable variation was detected in the reduction level of the reduced sheets. Raman spectroscopy indicated that, at first, the photocatalytic... 

    The effect of growth parameters on photo-catalytic performance of the MAO-synthesized TiO2 nano-porous layers

    , Article Materials Chemistry and Physics ; Volume 120, Issue 2-3 , 2010 , Pages 582-589 ; 02540584 (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    In this research, the effect of applied voltage and electrolyte concentration on structure, chemical composition, optical properties, and especially photo-catalytic activity of the TiO2 layers containing micro/nano-sized pores are discussed. TiO2 layers were synthesized by micro arc oxidation (MAO) process using different electrolyte concentrations and applied voltages. Surface structure of the layers was studied by scanning electron microscope (SEM); furthermore, energy dispersive spectrophotometry (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques were employed to determine phase structure and chemical composition of the layers. Photo-activity of the... 

    How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?

    , Article Applied Surface Science ; Volume 256, Issue 13 , 2010 , Pages 4253-4259 ; 01694332 (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Pure titania porous layers consisted of anatase and rutile phases, chemically and structurally suitable for catalytic applications, were grown via micro-arc oxidation (MAO). The effect of applied voltage, process time, and electrolyte concentration on surface structure, chemical composition, and especially photocatalytic activity of the layers was investigated. SEM and AFM studies revealed that pore size and surface roughness of the layers increased with the applied voltage, and the electrolyte concentration. Moreover, the photocatalytic performance of the layers synthesized at medium applied voltages was significantly higher than that of the layers produced at other voltages. About 90% of... 

    Effect of electrical parameters on morphology, chemical composition, and photoactivity of the nano-porous titania layers synthesized by pulse-microarc oxidation

    , Article Electrochimica Acta ; Volume 55, Issue 8 , 2010 , Pages 2760-2766 ; 00134686 (ISSN) Bayati, M. R ; Moshfegh, A. Z ; Golestani Fard, F
    2010
    Abstract
    TiO2 layers were grown via pulse type microarc oxidation process under different applied voltages, frequencies, and duty cycles. Surface chemical composition and phase structure of the synthesized layers were studied utilizing X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, scanning electron microscope (SEM) and atomic force microscope (AFM) were employed to investigate surface morphology and topography of the layers. It was revealed that the layers had a porous structure with both anatase and rutile phases. The anatase relative content in the layers increased with the applied frequency; meanwhile, it decreased with duty cycle at low applied voltages, but... 

    Persistent superhydrophilicity of sol-gel derived nanoporous silica thin films

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 2 , 2009 ; 00223727 (ISSN) Ganjoo, S ; Azimirad, R ; Akhavan, O ; Moshfegh, A. Z ; Sharif University of Technology
    2009
    Abstract
    In this investigation, sol-gel synthesized nanoporous silica thin films, annealed at different temperatures, with long time superhydrophilic property have been studied. Two kinds of sol-gel silica thin films were fabricated by dip-coating of glass substrates in two different solutions; with low and high water. The transparent coated films were dried at 100 °C and then annealed in a temperature range of 200-500 °C. The average water contact angle of the silica films prepared with low water content and annealed at 300 °C measured about 5° for a long time (6 months) without any UV irradiation. Instead, adding water into the sol resulted in silica films with an average water contact angle... 

    Capping antibacterial Ag nanorods aligned on Ti interlayer by mesoporous TiO2 layer

    , Article Surface and Coatings Technology ; Volume 203, Issue 20-21 , 2009 , Pages 3123-3128 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2009
    Abstract
    In this work, aligned and compact Ag nanorods capped by sol-gel mesoporous TiO2 layer were grown on Ti/Si(100) in order to be applied in antibacterial applications. The Ag nanorods with a high effective surface were grown by applying an electric field perpendicular to the surface of the Ag/Ti/Si thin film while it was being heat-treated at 700 °C in an Ar + H2 ambient. The grown silver nanorods had widths and lengths of 20-50 and 250-500 nm with an abundance in {100} facet, respectively. The TiO2 cap layer also had the specific surface area, the total pore volume and the pore diameter of 474 m2/g, 0.49 cm3/g and 8.0 nm, respectively. Antibacterial activities of the TiO2-capped Ag nanorods... 

    Photocatalytic degradation of methylene blue by TiO2-capped ZnO nanoparticles

    , Article 2nd International Congress on Ceramics, ICC 2008, Verona, 29 June 2008 through 4 July 2008 ; 2008 ; 9788880800842 (ISBN) Simchi, A ; Lak, A ; Nemati, Z. A ; SACMI; Iris Ceramica; SITI - B and T Group; Element Six; Corning ; Sharif University of Technology
    2008
    Abstract
    ZnO nanoparticles were fabricated via hydrothermal method and an amorphous TiO2 layer was then coated on the nanoparticles via sol-gel route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the synthesized ZnO nanoparticles were hexagonal with wurtzite structure and an average particle size of 38 nm. The thickness of the titanium oxide layer was determined to be 20-40 nm. The photocatalytic decolorization of Methylene blue under UV irradiation indicated that as-prepared TiO 2-capped ZnO is inferior than ZnO particles. Nevertheless, calcinations of the particles at 350 °C for 24 h significantly improved the photo-activity of the ZnO/TiO2 core/shell... 

    Photo-degradation of methelyne blue over V2O5- TiO2 nano-porous layers synthesized by micro arc oxidation

    , Article Catalysis Letters ; Volume 134, Issue 1-2 , 2010 , Pages 162-168 ; 1011372X (ISSN) Bayati, M. R ; Golestani Fard, F ; Zaker Moshfegh, A ; Sharif University of Technology
    Abstract
    V2O5-TiO2 porous layers were synthesized via micro-arc oxidation for the first time. The effect of the applied voltage on morphology, composition, and photo-activity of the layers was investigated. The layers, which consisted of anatase, rutile, and vanadium pentoxide phases, revealed an enhanced photo-activity. About 93% of methylene blue solution was degraded on the synthesized layers after 120 min UV-irradiation with a reaction rate constant of k = 0.0228 min-1. The band gap energies of the vanadia-titania and pure titania layers were calculated as 2.56 and 3.39 eV, respectively