Loading...
Search for: vacancies
0.007 seconds
Total 45 records

    Jahn-Teller Effect in Diamond Vacancy Under Stress

    , M.Sc. Thesis Sharif University of Technology monfared, Mohammad (Author) ; Vesaghi, M. A (Supervisor) ; Babamoradi, M (Co-Advisor)
    Abstract
    Electron states of diamond vacancy under stress were studied theoretically. The generalized Hubbard model is used to calculate the electrons energy levels. The results shows that the degeneracy of some levels (T, with triple space degeneracy) reduced to levels with lower degeneracy (E, with double space degeneracy and A, without degeneracy). Besides this spiting of degeneracy the energy of all states changed and therefore the transition energy between these states changed too. Jahn-Teller effect was observed  

    Synthesis, Characterization and Photoelectrochemical Properties of BiVO4 Porous Thin Films

    , M.Sc. Thesis Sharif University of Technology Rasouli Ardalani, Abolfazl (Author) ; Moshfegh, Alireza (Supervisor) ; Zirak, Mohammad (Co-Supervisor)
    Abstract
    Synthesis, characterization and photoelectrocatalytic performance evaluation of worm-like BiVO4 porous films have been conducted in this research. An in situ combustion approach was employed to prepare BiVO4 nanolayers on glass and ITO/glass by using drop casting, spin coating, dip coating and pulsed spray pyrolysis deposition techniques. The precursor solution of vanadium and bismuth include ~0.0233g ammonium metavanadate (NH4VO3) and ~0.0970g bismuth (III) nitrate pentahydrate (Bi(NO3)3.5H2O) in 2.5 mL ethylene glycol. Different deposition parameters were investigated for each of the aforementioned deposition techniques to obtain a uniformly-deposited BiVO4 nanolayer with high adhesion to... 

    Development of Nanostructured Lithium-Rich Cathode Material

    , Ph.D. Dissertation Sharif University of Technology Vahdatkhah, Parisa (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    This research is divided in three parts. In the first part of this research, we report the one-pot synthesis of carbonate-coated nanostructured LLO (Li2CO3@LLO) through a polyol-assisted method as a Li-ion battery cathode. Carbonate protects the cathode from adverse reactions with the electrolyte, also reduces the layered-to-spinel phase transition, thereby stabilizing the cathode structure. LLO nanostructure provides a fast Li+ diffusion. The target material exhibits excellent long-term stability with 77% capacity retention after 1000 cycles at 0.2C-rate. In the second part of research, Li(Na-doped)-Mn-Ni-O oxides were synthesized by different LiOH.H2O amount, type and amount of reducing... 

    Influence of vanadium, cobalt-codoping on electrochemical performance of titanium dioxide bronze nanobelts used as lithium ion battery anodes

    , Article Journal of Materials Science: Materials in Electronics ; 2018 , Pages 1-9 ; 09574522 (ISSN) Amirsalehi, M ; Askari, M ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    In this work, V, Co-codoped TiO2(B) samples are synthesized through a hydrothermal method, and used as negative electrode materials for lithium ion batteries. The amount of dopants is varied in order to investigate their influence on electrochemical properties. The formation of V, Co-codoped TiO2(B) nanobelts with widths of 20 and 60 nm is demonstrated using X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma–optical emission spectrometry and field-emission scanning electron microscopy analyses. In addition, the electrochemical properties of the samples are tested by cyclic voltammetry, charging/discharging, and cyclic performance techniques. Compared to other... 

    Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates

    , Article Research on Chemical Intermediates ; Volume 42, Issue 3 , 2016 , Pages 2429-2447 ; 09226168 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Moghaddasi Khiavi, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    A mechanochemical method was applied to prepare bismuth oxybromide (BiOBr) nanoplates using bismuth nitrate pentahydrate and potassium bromide for 15 (A15), 30 (A30) and 60 (A60) minutes. Scanning electron microscopy studies showed that all the products were comprised of nanoplates. Aggregated nanoplates along with microblocks were observed for A15 and A30 and the entire morphology was not homogenous. The morphology of A60 was uniform and consisted of thin and isolated nanoplates. Evaluation of the X-ray diffraction patterns showed that the purity and crystallinity of the products improved by increasing the milling time. The energy dispersive X-ray analysis confirmed the high purity of the... 

    Composition lines of the visible band of synthetic diamond

    , Article Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers ; Volume 42, Issue 5 A , 2003 , Pages 2749-2751 ; 00214922 (ISSN) Vesaghi, M. A ; Shafiekhani, A ; Horiuchi, K ; Sharif University of Technology
    Japan Society of Applied Physics  2003
    Abstract
    The visible band (band A) of photoluminescence spectra of high-purity synthesized diamond is analyzed by the deconvolution technique. A set of eight lines with distinct peak energies are found. The peak energy and the width of these lines were either constant or varied very slightly with temperature. The amplitude of the lines are significantly temperature dependent. The closeness of the temperature at which the amplitudes of these lines reach their minimum to the temperature at which the free-exiton emission is maximum, is an indication of the competition between these two effects  

    Stable local moments of vacancies, substitutional and hollow site impurities in graphene

    , Article Journal of Physics Condensed Matter ; Volume 27, Issue 15 , 2015 ; 09538984 (ISSN) Mashkoori, M ; Jafari, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    The two-sublattice nature of graphene lattice in conjunction with three-fold rotational symmetry, allows for the p-wave hybridization of the impurity state with the Bloch states of carbon atoms. Such an opportunity is not available in normal metals where the wave function is scalar. The p-wave hybridization function V (-k) appears when dealing with vacancies, substitutional adatoms and the hollow site impurities while the s-wave mixing on graphene lattice pertains only to the top site impurities. In this work, we compare the local moment formation in these two cases and find that the local moments formed by p-wave mixing compared to the s-wave one are robust against the changes in the... 

    Manipulation of structural, electronic and transport properties of hydrogen-passivated graphene atomic sheet through vacancy defects: First-principles numerical simulations based on density-functional-theory along with tight-binding approximation

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Sattar, A ; Irfan, M ; Iqbal, A ; Shahid, F. A ; Junaid Amjad, R ; Usman, A ; Mahmood, H ; Latif, H ; Imran, M ; Akhtar Ehsan, S ; Akhtar, M. N ; Akbar, N ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Using the first-principles procedure of density-functional-theory within tight-binding approximation and nonequilibrium Green's function formalism, this paper reports on the impact of vacancy defects on the structural, electronic and transport properties of hydrogen-passivated graphene atomic sheet. After the introduction of vacancy defects in graphene atomic sheet passivated with hydrogen atoms, apart from increase in band gap, a suppression is noted in the intensity of transmission channels and density of states arising from the long array deformations of the graphene sheet and a corresponding shift of the Fermi level. This in turn decreases the conductance of the defected graphene atomic... 

    Modeling of the mutual effect of dynamic precipitation and dislocation density in age hardenable aluminum alloys

    , Article Journal of Alloys and Compounds ; Volume 683 , 2016 , Pages 527-532 ; 09258388 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A model has been proposed to capture the complex strain rate effect on dynamic precipitation of GP zones in an age-hardenable aluminum alloy. The contributions of vacancies and dislocations to dynamically formed GP zones have been specified in the model. It has been demonstrated that the proposed model is capable for predicting the contribution of each dynamic precipitation mechanisms, accurately, which are acting during deformation. Furthermore, the vacancy and dislocation evolutions during deformation have been considered in this modeling. The effect of strain rate by considering different mechanisms of dynamic precipitation of GP zones has been studied and confirmed by experimental data... 

    Photoresponse enhancing in nanostructured WO3films by slight change in heating ambient

    , Article Journal of Alloys and Compounds ; Volume 693 , 2017 , Pages 871-875 ; 09258388 (ISSN) Naseri, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Providing solar hydrogen as a clean energy resource is one of the human challenges for future. Controlling oxygen vacancies as well as surface morphology in metal oxide semiconductors enables developing PEC H2production in some understood ways. Here, the influence of simple change in annealing atmosphere, air and pure oxygen, on photoresponse of nanocrystalline WO3has been studied completely. Results revealed that such slight change in annealing procedure increases effective surface interface and donor density by 77 and 72%, respectively. These effects and also retarding recombination of photogenerated electro-hole pair resulted in photocurrent enhancement under solar like illumination more... 

    Mechanistic insights into photogenerated electrons store-and-discharge in hydrogenated glucose template synthesized Pt: TiO2/WO3 photocatalyst for the round-the-clock decomposition of methanol

    , Article Materials Research Bulletin ; Volume 137 , 2021 ; 00255408 (ISSN) Mokhtarifar, M ; Nguyen, D. T ; Sakar, M ; Pedeferri, M ; Asa, M ; Kaveh, R ; Diamanti, M. V ; Do, T. O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrates the glucose-template assisted synthesis of hydrogen-treated Pt: TiO2/WO3 composites, and their round-the-clock photoactivity towards methanol (MeOH) degradation under light illumination and in dark. XRD indicated increasing rutile fraction in TiO2 as a function of template removal, WO3 crystallinity and H2 treatment process. The presence of oxygen vacancies in WO3 was confirmed by XPS. Lower recombination rate and higher surface area were observed in the optimized H2-Pt-G:TiO2/WO3 catalyst. The presence of oxygen vacancies and optical enhancements due to the synergistic interactions of the multi-system (TiO2, WO3 and Pt) extended the visible light absorption of the... 

    Enhanced photocatalytic activity of ZnO/g-C3N4 nanofibers constituting carbonaceous species under simulated sunlight for organic dye removal

    , Article Ceramics International ; Volume 47, Issue 18 , 2021 , Pages 26185-26196 ; 02728842 (ISSN) Naseri, A ; Samadi, M ; Pourjavadi, A ; Ramakrishna, S ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Semiconductor-based photocatalysis is an efficient approach for degradation of organic pollutants. In this context, ZnO/g-C3N4 composite nanofibers containing carbonaceous species with different concentrations of g-C3N4 nanosheets (x = 0.25, 0.5, 1, 2, 10 wt%) noted as ZnO/carbon/(x wt%) g-C3N4 are prepared by electrospinning technique. For preparation of the composite nanofibers, bulk g-C3N4 is exfoliated to nanosheets, and then it is mixed with polyvinyl alcohol and appropriate zinc acetate content followed by electrospinning process. Thermal annealing of the as spun zinc acetate/poly(vinyl alcohol)/g-C3N4 nanosheets sample under N2 atmosphere leads to the formation of carbonaceous species... 

    Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs)

    , Article Ceramics International ; Volume 48, Issue 19 , 2022 , Pages 28142-28153 ; 02728842 (ISSN) Yousaf, M ; Akbar, M ; Yousaf Shah, M. A. K ; Noor, A ; Lu, Y ; Akhtar, M. N ; Mushtaq, N ; Hu, E ; Yan, S ; Zhu, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The search for cathode materials with fast oxygen reduction reaction (ORR) catalytic activities and high ionic conductivity is the key obstacle to SOFCs commercialization and its operation at low temperatures. In order to search for a cathode with enhanced catalytic functionality, herein we report a single-phase CoFe2O4 (CFO) and CoGd0.2Fe1.80O4 (CGFO), which can be employed as an active cathode to improve electrocatalytic ORR functionalities at low temperature. It is found that CGFO having enriched oxygen vacancies exhibits the least polarization resistance (RP) of 0.42 Ωcm2 compared to the pure CFO which shows polarization resistance of 0.56 Ω cm2 under H2/air conditions. Furthermore,... 

    Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Hasanvandian, F ; Moradi, M ; Aghaebrahimi Samani, S ; Kakavandi, B ; Rahman Setayesh, S ; Noorisepehr, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, the potential of bismuth chromate (BCO), a new bismuth-based semiconductor belongs to the family of Bi2XO6 (X = Mo, W, or Cr), was introduced by a novel 1D/2D structure consist of BCO nanobelts and N2-freezed ultra-wrinkled graphitic carbon nitride (N–CN) nanosheets. To enhance intimate contact between BCO and N–CN (BCO/N–CN composite), surface oxygen vacancy (VO) was created as an efficient electron transfer highway using a simple alkaline-treatment-assisted method. Various characterization techniques, including XRD, FT-IR, EPR, FE-SEM, TEM, BET, DRS, PL, EIS, and photocurrent transient analyses were conducted to elucidate the physicochemical aspects of catalysts. The... 

    Shed light on defect induced enhanced visible-light photocatalysis activity of rutile TiO2 nanoparticles: effects of annealing on blue-gray to light–gray transition

    , Article Journal of Materials Research and Technology ; Volume 17 , 2022 , Pages 2400-2409 ; 22387854 (ISSN) Ziashahabi, A ; Poursalehi, R ; Naseri, N ; Peymani, R ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    Preparation of the defective TiO2 nanoparticles (NPs) have been recently in particular interest for its outstanding applications in visible-light active photocatalysis. In order to make TiO2 visible-light absorber, optical band gap should be modified especially via introducing structural defects like oxygen vacancies as an effective pathway. In this research, we prepared defective rutile TiO2 NPs with highly efficient photocatalytic activity under visible light. The NPs were synthesized by electric arc discharge in water as a cost-effective and environmentally friendly method with capability of defect formation which followed by heat treatment. The photocatalytic activity improvement... 

    Preparation of nitrogen-doped aluminium titanate (Al2TiO5) nanostructures: Application to removal of organic pollutants from aqueous media

    , Article Advanced Powder Technology ; Volume 31, Issue 8 , 2020 , Pages 3328-3341 Azarniya, A ; Zekavat, M ; Soltaninejad, M ; Bakhshandeh, F ; Reza Madaah Hosseini, H ; Kashani, S ; Amutha, C ; Khatiboleslam Sadrnezhaad, S ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Recently, aluminum titanate (Al2TiO5)-based nanostructures have been proved to serve as an efficient photocatalytic material with satisfactory photodegradation capacity. In this study, the citrate sol–gel method was used to synthesize these nanostructures and inspect the significant impacts of nitrogen-doping-originated crystalline defects on their photocatalytic performance in some details for the first time. The results indicated that the penetration of nitrogen atoms into AT crystal lattice, depending on the nitriding time and temperature, can induce a great deal of the residual stress and result in propagating the existing cracks and breaking down the particles. The XPS and FTIR results... 

    Computational study of spin caloritronics in a pristine and defective antimonene nanoribbon

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 120 , 2020 Hashemi, S ; Faez, R ; Darvish, G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this paper, by using first-principle density functional theory (DFT) combined with non-equilibrium Green's function (NEGF), thermally induced spin current in zigzag and armchair Antimonene Nanoribbon (SbNR) is investigated. Also, we obtain higher spin current in Armchair nanoribbon (ANR) than zigzag nanoribbon (ZNR), because the start energy of transmission for ANR is closer to the Fermi level than ZNR. The results show that the device has a perfect spin Seebeck effect under temperature difference without gate voltage or bias voltage. For the ANR configuration, the competition between spin up holes and spin down electrons leads to negative differential behavior of charge current, which is... 

    The formation and dissociation energy of vacancies in cementite: A first-principles study

    , Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 502 , 2021 , Pages 157-163 ; 0168583X (ISSN) Mehrdad Zamzamian, S ; Amirhossein Feghhi, S ; Samadfam, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Because of the possibility of various types of vacancies in cementite due to its crystalline structure, the focus of this paper was only on vacancies. In this regard, the formation energies of single, two, three and four vacancies of over than 120 different cases were calculated using first-principles method. For the case of single vacancy, the results were in three values of ~1.63, 1.39 and 0.78 eV according to iron vacancies at general positions, iron vacancies located on mirror planes and carbon vacancies in the interstitial positions, respectively. The results for the case of two, three and four vacancies were between from 2.10 to 3.34 eV, from 3.92 to 5.10 eV and from 4.77 to 6.33 eV,... 

    Vibrational behavior of defective and repaired carbon nanotubes under thermal loading: A stochastic molecular mechanics study

    , Article Mechanics of Materials ; Volume 163 , 2021 ; 01676636 (ISSN) Payandehpeyman, J ; Moradi, K ; Zeraati, A. S ; Hosseinabadi, H. G ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbon nanotubes (CNTs) are promising candidates for high-resolution mass nanosensors owing to their unique vibrational behavior. The structural characteristic (e.g. defect type and density) and working temperature have a significant effect on the natural frequency of CNT-based sensors. Herein, a stochastic approach based on novel finite element and molecular mechanics simulations is implemented to model the effect of temperature and structural characteristics of single-wall CNTs including defects (vacancy defect with different densities) and chirality (zigzag and armchair) on their vibrational behavior. The results show that the vacancy defects exert a significant deterioration of the... 

    A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials

    , Article Journal of Rare Earths ; Volume 36, Issue 1 , 2018 , Pages 72-85 ; 10020721 (ISSN) Adyani, S. M ; Ghorbani, M ; Sharif University of Technology
    Chinese Society of Rare Earths  2018
    Abstract
    High performance Fe-Gd-P tri-doped TiO2 nanoparticles (1 at% for each dopant) were successfully synthesized by a modified sol–gel method. Various analytical and spectroscopic techniques were carried out to determine the physicochemical properties of the prepared samples, including XRD, EDX, FESEM, BET, FTIR, XPS, PL, EIS and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activities of prepared samples were evaluated by photo degradation of methyl orange (MO) and 4-chlorophenol (4-CP) as model pollutants under visible light irradiation. Effects of each dopant on different properties of TiO2 nanoparticles were investigated. Results show that Gd and P doping enhances TiO2 surface...