Loading...
Search for: vascular-grafts
0.006 seconds

    Design and Fabrication of Engineered Biomaterials for Tissue Engineering Applications such as Cardiovascular System

    , M.Sc. Thesis Sharif University of Technology Khayat Norouzi, Sara (Author) ; Shamlou, Amir (Supervisor)
    Abstract
    Cardiovascular diseases are the leading cause of death all over the world, even more common than cancers. The first reason of mortality in Iran according to statistics is the occlusion of coronary arteries. Unfortunately almost one third of patients doesn’t have enough blood vessels to be used in the bypass surgery and need artificial vessels. These artificial blood vessels with small diameters (less than 6 mm) will fail quickly. As a result there is an increasing demand for tissue engineered blood vessels which are capable of enduring high blood pressures. An artificial blood vessel should mimic both structure and mechanical properties of the real one. Blood vessels have layered structures,... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, 26 November 2014 through 28 November 2014 ; November , 2014 , Pages 40-43 ; 9781479974177 (ISBN) Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Synergy of titanium dioxide nanotubes and polyurethane properties for bypass graft application: Excellent flexibility and biocompatibility

    , Article Materials and Design ; Volume 215 , 2022 ; 02641275 (ISSN) Kianpour, G ; Bagheri, R ; Pourjavadi, A ; Ghanbari, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A flexible, porous and biocompatible titanium dioxide nanotubes (TNT) - polyurethane (PU) film has been produced as a new scaffold for artificial vascular grafts. Synergistic improvements in the properties of vertical TNT and PU was reached, including enhancements in their biocompatibility, mechanical strength, flexibility and porosity. Open-ended (OE) TNT-PU and close-ended (CE) TNT-PU films were synthesized and their mechanical and biological properties were compared with their pure PU counterparts. TNT were attached to PU with a new strategy. The resulting flexible structure was hydrophilic and super hydrophilic in OE-TNT-PU and CE-TNT-PU scaffolds, respectively. The gas leakage during... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; Nov , 2014 , p. 40-43 Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two...