Loading...
Search for: velocity
0.01 seconds
Total 839 records

    Online velocity optimization of robotic swarm flocking using particle swarm optimization (PSO) method

    , Article 2009 6th International Symposium on Mechatronics and its Applications ; 2009, Article number 5164776 , 2009 , p. 5164776- ; ISBN: 978-142443481-7 Vatankhah, R ; Etemadi, S ; Honarvar, M ; Alasty, A ; Boroushaki, M ; Vossoughi, G ; Sharif University of Technology
    Abstract
    In this paper, the agent velocity in robotic swarm was determined by using particle swarm optimization (PSO) to maximize the robotic swarm coordination velocity. A swarm as supposed here is homogenous and includes at least two members. Motion and behavior of swarm members are mostly result of two different phenomena: interactive mutual forces and influence of the agent. Interactive mutual forces comprise both attraction and repulsion. To be more realistic the field of the swarm members' view is not infinity. So influence of the coordinator agent on the robotic swarm would be local. The objective here is to guide the robotic swarm with maximum possible velocity. According to equation motion... 

    Leader connectivity management and flocking velocity optimization using the particle swarm optimization method

    , Article Scientia Iranica ; Vol. 19, Issue 5 , 2012 , pp. 1251-1257 ; ISSN: 10263098 Etemadi, S ; Vatankhah, R ; Alasty, A ; Vossough,i G. R ; Boroushaki M ; Sharif University of Technology
    Abstract
    Flocking through leader following structures in mobile networks raises attractive control problems. Due to limited sensing radii, leaders locally influence a network of agents. In this paper, we consider the problem of real-time maximization of flocking velocity. By using local information and a Particle-Swarm-Optimization (PSO) algorithm, a Leader Agent (LA) actively motivates flocking at high speed. The LA manages topology of the network in its neighborhood and increases flocking velocity. PSO output quality and calculation costs show that the proposed optimization algorithm is practically feasible. A case-study is also presented  

    Robust regulation and tracking system design for multivariable control of the tape transport mechanism

    , Article Microsystem Technologies ; Vol. 18, Issue. 5 , 2012 , pp. 557-573 ; ISSN: 09467076 Moradi, H ; Bakhtiari-Nejad, F ; Alasty, A ; Sharif University of Technology
    Abstract
    Tape mechanisms must be able to transport the tape with a constant velocity for achieving high rate of data transfer. In this paper, a multivariable model of tape transport mechanism including the take-up and supply reel servos for tape tension control and capstan servo for speed control is considered. To achieve desired performance,pole-placement approach based on general canonical control form (GCCF) is used. Instead of using expensive tension sensors, an observer is designed. A regulator system is developed for disturbance rejection; and a modified integral control is designed for perfect tracking of desired setpoints in tape speed and tensions. Since the real dynamic model associates... 

    Performance control of a tape transport mechanism using entire eigenstructure assignment

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 10, Issue PART A , 2010 , pp. 133-140 ; ISBN: 9780791843833 Moradi, H ; Hajikolaei, K. H ; Motamedi, M ; Alasty, A ; Sharif University of Technology
    Abstract
    To achieve high rate of data transfer, tape mechanisms must be able to transport the tape with a constant velocity for scanning. During this process, it is desired to make the rise time minimized without timing and data transfer errors. In this paper, three servo systems including the take-up and supply reel servos for tape tension control and capstan servo for speed control are considered. So, tape transport mechanisms can be described with a nonlinear multi-input multi-output system (MIMO). After state-space representation of the problem, feedback control is designed for tracking objective. It should be mentioned that an increase in the speed of time response of system corresponds to an... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Vol. 4, issue , 2011 , p. 2461-2466 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal... 

    Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices

    , Article Analytica Chimica Acta ; Vol. 838, issue , August , 2014 , pp. 64-75 ; ISSN: 00032670 Sadeghi, A ; Amini, Y ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a... 

    Comparison of boundary slip for two variants of immersed boundary method in lattice Boltzmann framework

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 404 , 2014 , Pages 200-216 ; ISSN: 03784371 Farnoush, S ; Manzari, M. T ; Sharif University of Technology
    Abstract
    In this paper, the Immersed Moving Boundary-Lattice Boltzmann (IMB-LB) method is compared with the single relaxation time and multiple-relaxation-time versions of the Immersed Boundary-Lattice Boltzmann (IB-LB) method in terms of the amount of numerical velocity slip produced on solid boundaries. The comparisons are performed for both straight and curved boundaries based on the effects of thickness of virtual domain used in the IB method for the first time, and relaxation time parameter(s) of the LB method. For the straight boundaries, a shear flow problem is studied while for the curved boundaries, a falling circular cylinder in an infinite channel is investigated. First, sensitivities of... 

    Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows

    , Article Atmospheric Environment ; Vol. 89, issue , 2014 , Pages 199-206 ; ISSN: 13522310 Saidi, M. S ; Rismanian, M ; Monjezi, M ; Zendehbad, M ; Fatehiboroujeni, S ; Sharif University of Technology
    Abstract
    Modeling the behavior of suspended particles in gaseous phase is important for diverse reasons; e.g. aerosol is usually the main subject of CFD simulations in clean rooms. Additionally, to determine the rate and sites of deposition of particles suspended in inhaled air, the motion of the particles should be predicted in lung airways. Meanwhile there are two basically different approaches to simulate the behavior of particles suspension, Lagrangian and Eulerian approaches. This study compares the results of these two approaches on simulating the same problem. An in-house particle tracking code was developed to simulate the motion of particles with Lagrangian approach. In order to simulate the... 

    Influence of β-lactoglobulin and its surfactant mixtures on velocity of the rising bubbles

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , October , 2014 , pp. 361-368 ; ISSN: 09277757 Ulaganathan, V ; Krzan, M ; Lotfi, M ; Dukhin, S. S ; Kovalchuk, V. I ; Javadi, A ; Gunes, D. Z ; Gehin-Delval, C ; Malysa, K ; Miller, R ; Sharif University of Technology
    Abstract
    The rising velocity of air bubbles in surfactant solutions is a sensitive measure for the formation of a dynamic adsorption layer (DAL) at the bubble surface. Due to a certain surface coverage by adsorbed species the bubble surface starts to become immobilized and the rising velocity is retarded. There is a large difference in the retardation effect in presence of the protein β-lactoglobulin (BLG) alone and its mixed solutions with surfactants. In presence of added surfactants BLG forms complexes, which adsorb and retard the bubble rising velocity according to their respective surface activity and adsorption kinetics. While the nonionic surfactant C12DMPO does not show significant increase... 

    High frequency oscillatory flow in micro channels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , 2014 , pp. 355-360 ; ISSN: 09277757 Karbaschi, M ; Javadi, A ; Bastani, D ; Miller, R ; Sharif University of Technology
    Abstract
    This paper deals with computational and experimental studies on the oscillatory flow at high frequencies up to 100. Hz performed with the Oscillating Drop and Bubble Analyzer (ODBA) setup based on the capillary pressure technique. The CFD results are validated considering pressure amplitude experimental data. The simulated results of phase shift between the generated oscillatory flow and the consequent pressure amplitudes show also good agreement with the experimental data. In absence of any compressibility and viscoelasticity effects and assumptions, a complex velocity field during oscillation is the main reason for the observation of a phase shift. The results of velocity profiles at the... 

    Nanofluidic transport inside carbon nanotubes

    , Article Journal of Physics D: Applied Physics ; Volume 47, Issue 6 , 12 February , 2014 ; ISSN: 00223727 Moghimi Kheirabadi, A ; Moosavi, A ; Akbarzadeh, A. M ; Sharif University of Technology
    Abstract
    Using non-equilibrium molecular dynamics simulations, we investigate the effects of nanotube size, mean flow velocity, ion concentration and temperature of an electrolyte water solution on shearing stress and nominal viscosity. It is shown that the distributed electric field arising from the electrolyte water solution has significant influences on fluid properties. Also, the temperature of the solution, which causes thermal movement, affects nanofluidic transport in nanoenvironments. The nominal viscosity and shearing stress increases as the tube diameter increases. When the temperature of solution increases or ion concentration decreases, the shearing stress and nominal viscosity increase.... 

    Requirements for soil-specific correlation between shear wave velocity and liquefaction resistance of sands

    , Article Soil Dynamics and Earthquake Engineering ; Vol. 57, issue , 2014 , pp. 152-163 ; ISSN: 02677261 Ahmadi, M. M ; Akbari Paydar, N ; Sharif University of Technology
    Abstract
    The application of the simplified method for evaluating the liquefaction potential based on shear wave velocity measurements has increased substantially due to its advantages, especially for microzonation of liquefaction potential. In the simplified method, a curve is proposed to correlate the cyclic resistance ratio (CRR) with overburden stress-corrected shear wave velocity (Vs1). However, the uniqueness of this curve for all types of soils is questionable. The objective of this research is to study whether the correlation between CRR and Vs1 is unique or not. Besides, the necessity of developing the soil-specific correlations is also investigated. Based on laboratory test data, a new... 

    Hot extrusion process modeling using a coupled upper bound-finite element method

    , Article Journal of Manufacturing Processes ; Vol. 16, issue. 2 , 2014 , pp. 233-240 ; ISSN: 15266125 Hosseinabadi, H. G ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    A thermo-mechanical model has been developed for modeling of hot extrusion processes. Accordingly, an admissible velocity field was first proposed by means of stream function method and then, extrusion pressure as well as temperature variations within the metal and the die were predicted employing a combined upper bound and Petrov-Galerkin finite element analysis. In order to evaluate the model predictions, hot extrusion of AA6061-10%SiCp was considered under both isothermal and non-isothermal conditions and the predicted force-displacement diagrams under various extrusion conditions were compared with the experimental ones and reasonable consistency was found between the two sets of results... 

    A back-propagation approach to compensate velocity and position errors in an integrated inertial/celestial navigation system using unscented Kalman filter

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Vol. 228, issue. 10 , 2014 , pp. 1702-1712 ; ISSN: 09544100 Nobahari, H ; Ghanbarpour Asl, H ; Abtahi, S. F ; Sharif University of Technology
    Abstract
    This article aims to compensate the velocity and position errors that exist when the star sensor starts to work in a strapdown inertial navigation system aided by celestial navigation. These systems are integrated via unscented Kalman filter to estimate the current attitude and the gyros fixed bias, precisely. Since an accurate integration is desired, the nonlinear attitude equations are utilized in filter and these equations are propagated through a precise discretization method. Then, implementing the back-propagation and smoothing techniques, the initial attitude and the accelerometers fixed bias are also estimated. Finally, carrying out a parallel navigation, the velocity and position... 

    Performance of a standalone wind-hydrogen power system for regions with seasonal wind profile: A case study in Khaf region

    , Article Sustainable Energy Technologies and Assessments ; Vol. 7 , September , 2014 , pp. 265-278 ; ISSN: 22131388 Ahmadi, S ; Rezaei Mirghaed, M ; Roshandel, R ; Sharif University of Technology
    Abstract
    The present study was aimed at performance and energy analysis of a hybrid wind-hydrogen power system. Such system consists of wind turbines, batteries for the short time energy storage, electrolyzer, fuel cell and hydrogen tank for long time energy storage. The proposed configuration is used to supply energy demand of a region with discrete seasonal wind speed regime. Temporary wind energy profiles restrict using batteries for electricity storage as they lose much electrical stored energy for the long time. Based on direct wind turbine usage, batteries and hydrogen storage, different energy supply strategies are introduced and analyzed to power the household electricity demand. The energy... 

    A direct method for acoustic impedance measurement based on the measurement of electrical impedance of acoustic transmitter

    , Article Applied Acoustics ; Vol. 77, Issue. 1 , 2014 , pp. 76-81 ; ISSN: 0003-682X Ahadi, M ; Bakhtiar, M. S ; Sharif University of Technology
    Abstract
    A simple and straight forward method for acoustic impedance measurement is presented and evaluated. In this method a speaker is used as the signal source. The relationship between the electrical impedance of the speaker and its acoustical load is developed and studied. It is shown that the electrical current and voltage of the speaker relate to the acoustical pressure and volume velocity. The mechanical and acoustical impedances are therefore easily derived by measuring the electrical current and voltage of the circuit. The proposed method yield itself to the automatic computer measurement and can be used for the field and in situ measurements. Comparison of the measurement data with those... 

    Effects of microhydrophobic porous layer on water distribution in polymer electrolyte membrane fuel cells

    , Article Journal of Fuel Cell Science and Technology ; Vol. 11, Issue. 1 , 2014 ; ISSN: 1550-624X Ahmadi, F ; Roshandel, R ; Sharif University of Technology
    Abstract
    Performance of polymer electrolyte membrane fuel cells (PEMFC) at high current densities is limited to transport reactants and products. Furthermore, large amounts of water are generated and may be condensed due to the low temperature of the PEMFC. Development of a two-phase flow model is necessary in order to predict water flooding and its effects on the PEMFC performance. In this paper, a multiphase mixture model (M2) is used, accurately, to model two-phase transport in porous media of a PEMFC. The cathode side, which includes channel, gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL), is considered as the computational domain. A multidomain approach has been used... 

    Modeling and CFD simulation of a mixed-convection flow of regular fluids and nanofluids in vertical porous and regular channels

    , Article Heat Transfer - Asian Research ; Vol. 43, issue. 3 , May , 2014 , pp. 243-269 ; ISSN: 1523-1496 Hashemi Amrei, S. M. H ; Dehkordi, A. M ; Sharif University of Technology
    Abstract
    In this article, the problem of combined forced and free convection in vertical porous and regular channels for both regular fluids and nanofluids has been solved using the CFD technique in the entrance regions of momentum and heat transfer taking into account the influences of viscous heating and inertial force. In this regard, various types of viscous dissipation models reported in the literature such as the Darcy model, the power of the drag force model, and the clear fluid-compatible model were applied. In the case of nanofluid flow, both the Brownian and thermophoresis molecular transfer mechanisms were considered. The dimensionless distributions of velocity, temperature, and the volume... 

    Electrokinetic mixing and displacement of charged droplets in hydrogels

    , Article Transport in Porous Media ; Vol. 104, Issue. 3 , Jun , 2014 , pp. 469-499 ; ISSN: 01693913 Mohammadi, A ; Sharif University of Technology
    Abstract
    Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential ζ. The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the... 

    Modeling active micromixers with multiple microstirrers using smoothed particle hydrodynamics

    , Article Scientia Iranica ; Vol. 21, issue. 4 , 2014 , pp. 1390-1402 ; ISSN: 10263098 Jafarian, A ; Pishevar, A ; Saidi, M. S ; Sharif University of Technology
    Abstract
    The smoothed particle hydrodynamics method is used to explore the effects of design parameters on the mixing efficiency of two types of active micromixer. First, the complex flow field and the mixing process of two separated fluids in a square mixing chamber with nine symmetric microstirrers are simulated. The influence of design parameters, such as the microstirrer rotation arrangement and the angular velocity of the microstirrer, on the mixing performance, is investigated. The mixing index parameter on ten control points is calculated and the average mixing index is compared for different cases. Simulations illustrate that the rotation arrangement of microstirrers is a key parameter in the...