Loading...
Search for: velocity-profile
0.01 seconds
Total 57 records

    Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows

    , Article Atmospheric Environment ; Vol. 89, issue , 2014 , Pages 199-206 ; ISSN: 13522310 Saidi, M. S ; Rismanian, M ; Monjezi, M ; Zendehbad, M ; Fatehiboroujeni, S ; Sharif University of Technology
    Abstract
    Modeling the behavior of suspended particles in gaseous phase is important for diverse reasons; e.g. aerosol is usually the main subject of CFD simulations in clean rooms. Additionally, to determine the rate and sites of deposition of particles suspended in inhaled air, the motion of the particles should be predicted in lung airways. Meanwhile there are two basically different approaches to simulate the behavior of particles suspension, Lagrangian and Eulerian approaches. This study compares the results of these two approaches on simulating the same problem. An in-house particle tracking code was developed to simulate the motion of particles with Lagrangian approach. In order to simulate the... 

    High frequency oscillatory flow in micro channels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , 2014 , pp. 355-360 ; ISSN: 09277757 Karbaschi, M ; Javadi, A ; Bastani, D ; Miller, R ; Sharif University of Technology
    Abstract
    This paper deals with computational and experimental studies on the oscillatory flow at high frequencies up to 100. Hz performed with the Oscillating Drop and Bubble Analyzer (ODBA) setup based on the capillary pressure technique. The CFD results are validated considering pressure amplitude experimental data. The simulated results of phase shift between the generated oscillatory flow and the consequent pressure amplitudes show also good agreement with the experimental data. In absence of any compressibility and viscoelasticity effects and assumptions, a complex velocity field during oscillation is the main reason for the observation of a phase shift. The results of velocity profiles at the... 

    Experimental investigation of the effect of obstacles on the behavior of turbidity currents

    , Article Canadian Journal of Civil Engineering ; Volume 40, Issue 4 , 2013 , Pages 343-352 ; 03151468 (ISSN) Oshaghi, M. R ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    2013
    Abstract
    Turbidity current is produced when a particle-laden fluid flows under lighter ambient fresh fluid. The streaming of particle-laden fluid is called a turbidity current and this kind of current is an important mechanism for sediment transportation in lakes and oceans. In the present research, the main concentration is on the effect of obstacle with an isosceles right triangular cross section on the behavior of turbidity current. A series of laboratory experiments were carried out with various obstacle heights and different inlet densimetric Froude numbers. In each experiment, velocity profiles upstream and downstream of the obstacle were measured, using an acoustic Doppler velocimeter. Kaolin... 

    Long-lived and unstable modes of Brownian suspensions in microchannels

    , Article Journal of Fluid Mechanics ; Volume 701 , 2012 , Pages 407-418 ; 00221120 (ISSN) Khoshnood, A ; Jalali, M. A ; Sharif University of Technology
    2012
    Abstract
    We investigate the stability of the pressure-driven, low-Reynolds-number flow of Brownian suspensions with spherical particles in microchannels. We find two general families of stable/unstable modes: (i) degenerate modes with symmetric and antisymmetric patterns; (ii) single modes that are either symmetric or antisymmetric. The concentration profiles of degenerate modes have strong peaks near the channel walls, while single modes diminish there. Once excited, both families would be detectable through high-speed imaging. We find that unstable modes occur in concentrated suspensions whose velocity profiles are sufficiently flattened near the channel centreline. The patterns of growing unstable... 

    Drag performance of divergent tubular-truncated cones: A shape optimization study

    , Article International Journal of Environmental Science and Technology ; Volume 9, Issue 1 , 2012 , Pages 105-112 ; 17351472 (ISSN) Lotfi, A ; Rad, M ; Sharif University of Technology
    2012
    Abstract
    The use of more efficient energy consuming devices, which are closely associated with reduction of environmental pollution, has gained significant interest in the recent decades. The reduction of drag coefficient also improves safety and durability of environmental structures subjected to high-velocity fluid flow, and causes the noise and vibration to decrease as well. This paper describes the efficiency improvement in energy management by means of reducing drag coefficient in a practical divergent tubular- truncated cone. Extensive numerical simulations with emphasis on the shape optimization study were performed in order to find minimum drag coefficient for both laminar and turbulent flows... 

    A general methodology for bearing design in non-symmetric T-shaped sections in extrusion process

    , Article Journal of Materials Processing Technology ; Volume 212, Issue 1 , 2012 , Pages 249-261 ; 09240136 (ISSN) Meybodi, A. K ; Assempour, A ; Farahani, S ; Sharif University of Technology
    Abstract
    In this study, a general methodology has been developed to design the proper bearing in order to eliminate the curvature of the final product in extrusion process. Three smooth curved (advanced-surface) dies with non-symmetric T-shaped sections and different off-centricities have been studied. For each die, the proper bearing has been designed and physical and numerical modeling have been performed to validate the design. The design procedure is as follows: A formulation, based on Bezier curves, has been used to determine the exit velocity profile. Since the result of Bezier method is different from the actual velocity profile, the Chitkara corrective function has been modified and applied... 

    Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 14-15 , August , 2011 , Pages 792-798 ; 03770257 (ISSN) Babaie, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    Electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit is analyzed. After numerically solving the Poisson-Boltzmann equation, the momentum equation with electroosmotic body force is solved through an iterative numerical procedure for both favorable and adverse pressure gradients. The results reveal that, in case of pressure assisted flow, shear-thinning fluids reach higher velocity magnitudes compared with shear-thickening fluids, whereas the opposite is true when an adverse pressure gradient is applied. The Poiseuille number is found to be an increasing function of the dimensionless Debye-Hückel parameter, the wall zeta potential, and the flow behavior... 

    Laminar premixed V-shaped flame response to velocity and equivalence ratio perturbations: Investigation on kinematic response of flame

    , Article Scientia Iranica ; Volume 18, Issue 4 B , 2011 , Pages 913-922 ; 10263098 (ISSN) Riazi, R ; Farshchi, M ; Sharif University of Technology
    2011
    Abstract
    The response of a rod-stabilized, V-shaped, premixed flame to upstream velocity and equivalence ratio perturbations was characterized as a function of excitation frequency. The response of the flame to equivalence ratio perturbations was calculated, assuming that the heat release response is controlled by contributions from three disturbances. These disturbances include flame speed, heat of reaction and flame area. Using an analytical model, based on linearization of the front tracking equation for inclined flames, the kinematics of a V-flame anchored on a central obstacle was investigated and its response was compared with that of a conical flame. The results suggest that the phase response... 

    Experiments on turbidity current regimes in a straight open channel

    , Article World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress, 22 May 2011 through 26 May 2011 ; May , 2011 , Pages 4047-4064 ; 9780784411735 (ISBN) Keshtkar, S ; Ayyoubzadeh, S. A ; Firoozabadi, B ; Kordi, E ; Sharif University of Technology
    2011
    Abstract
    The present study has been conducted to investigate the effect of inlet flow regimes on vertical velocity and concentration profiles of the turbidity current. Experiments carried out on small scale channel and Kaolin with a density of 2.65 kg/m3 and a mean particle diameter of 4.5 μm, was used to generate the currents. Velocities were obtained at a rate of 10 Hz using an acoustic Doppler velocimeter. Using the siphon sampling approach, the acoustic backscattering intensity was calibrated and concentration was determined using a backscattering analysis. Results showed that the ratio of maximum velocity height to the height of the current was around 0.4-0.5 in sub- and super-critical regimes.... 

    Mixed electroosmotically and pressure-driven flow with temperature- dependent properties

    , Article Journal of Thermophysics and Heat Transfer ; Volume 25, Issue 3 , Sep , 2011 , Pages 432-442 ; 08878722 (ISSN) Sadeghi, A ; Yavari, H ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    2011
    Abstract
    The present work reports the outcome of a comprehensive parametric study on mixed electroosmotically and pressure-driven flow in slit microchannels with constant wall heat fluxes. Special attention is given to disclose the applicability ranges of usual assumptions in simplified analyses. The governing equations for fully developed conditions are first made dimensionless and then solved by means of an implicit finite difference method. The results reveal that the assumption of constant thermophysical properties does not leadto significant errors in practical applications. Although the Debye-Huckel linearization may successfully be used to evaluate velocity profiles up to the zeta potentials... 

    Experimental observation of the flow structure of turbidity currents

    , Article Journal of Hydraulic Research ; Volume 49, Issue 2 , 2011 , Pages 168-177 ; 00221686 (ISSN) Nourmohammadi, Z ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The structure of turbidity currents released on a sloping bed below fresh water is investigated. Kaolin is used as a suspended material. Laboratory observations indicate that if a dense layer moves through the channel, the current thickness increases due to a hydraulic jump. This phenomenon occurs under special inlet conditions and has a significant effect on the current structure including velocity profile, current height and bed shear stress. Flows with different inlet Froude numbers based on various inlet concentrations behave more distinctly than those based on different inlet opening heights. Laboratory experiments indicate that an increase in the inlet Froude number causes an increase... 

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The... 

    Numerical Simulation of Saccardo Ventilation System in Tunnel Fire Scenarios

    , M.Sc. Thesis Sharif University of Technology Ganjiazad, Rouhollah (Author) ; Afshin, Hossein (Supervisor) ; Farhanieh, Bijan (Supervisor)
    Abstract
    While the population of the cities all over the world is increasing, more and more tunnels and underground transportation passages are being constructed. So, there is an urgent need for designing an appropriate ventilation system for these passages, not only in normal conditions but also for emergency scenarios especially in fire incidents.In the present research, the operation of Saccardo ventilation system, especially in emergency fire scenarios is investigated using computational fluid dynamics methods. Studies conducted in this research are classified into five parts.In the first part, the effect of tunnel ventilation flow rate (due to Saccardo system operation) and its interaction with... 

    Dynamics of Rear Stagnant Cap formation at the surface of spherical bubbles rising in surfactant solutions at large Reynolds numbers under conditions of small Marangoni number and slow sorption kinetics

    , Article Advances in Colloid and Interface Science ; Volume 222 , 2015 , Pages 260-274 ; 00018686 (ISSN) Dukhin, S. S ; Kovalchuk, V. I ; Gochev, G. G ; Lotfi, M ; Krzan, M ; Malysa, K ; Miller, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    On the surface of bubbles rising in a surfactant solution the adsorption process proceeds and leads to the formation of a so called Rear Stagnant Cap (RSC). The larger this RSC is the stronger is the retardation of the rising velocity. The theory of a steady RSC and steady retarded rising velocity, which sets in after a transient stage, has been generally accepted. However, a non-steady process of bubble rising starting from the initial zero velocity represents an important portion of the trajectory of rising, characterized by a local velocity profile (LVP). As there is no theory of RSC growth for large Reynolds numbers Re « 1 so far, the interpretation of LVPs measured in this regime was... 

    Prediction of downhole flow regimes in deviated horizontal wells for production log interpretation

    , Article Society of Petroleum Engineers - Trinidad and Tobago Energy Resources Conference 2010, SPE TT 2010, 27 June 2010 through 30 June 2010 ; Volume 2 , June , 2010 , Pages 525-530 ; 9781617388859 (ISBN) Bahrami, H ; Hosseinian, A ; Rasouli, V ; Siavoshi, J ; Mirabolghasemi, M ; Sinanan, B ; Bagherian, B ; Sharif University of Technology
    2010
    Abstract
    Production logging is used to evaluate wells production performance. Interpretation of production log data provides velocity profile and contribution of each zone on total production. In multi-phase flow conditions, production log interpretation can be challenging since producing fluids do not have similar densities and travel with different speed depending on fluids properties and wellbore deviation. Production log interpretation in multi-phase producing wells requires identifying downhole flow regimes and determining velocity profile for each phase. There are different flow regimes and velocity models available, which are being used in production log interpretation to determine wells flow... 

    Dissipative particle dynamics simulation of electroosmotic flow in nanoscale channels

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 4 January 2010 through 7 January 2010 ; 2010 ; 9781600867392 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    This Paper presents the simulation of electroosmotic flow in nanochannels using the dissipative particle dynamics (DPD) method. Most of the past electroosmotic phenomenon studies have been carried out using the continuum flow assumptions. However, there are many electroosmotic applications in nanoscales NEMS and microscales MEMS, which need to be treated using non-continuum flow assumptions. We simulate the electroosmotic flow within the mesoscopic scale using the DPD method. Contrary to the ordinary molecular dynamics method, the DPD method provides less computational costs. We will show that the current DPD results are in very good agreement with other available non-DPD results. To expand... 

    DPD simulation of electroosmotic flow in nanochannels and the evaluation of effective parameters

    , Article 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 28 June 2010 through 1 July 2010, Chicago, IL ; 2010 ; 9781600867453 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    We provide the simulation of electroosmotic phenomenon in nanochannels using the Dissipative Particle Dynamics (DPD) method. We study the electroosmotic phenomenon for both newtonian and non-newtonian fluids. Literature shows that most of past electroosmotic studies have been concentrated on continuum newtonian fluids. However, there are many nano/microfluidic applications, which need to be treated as either non-newtonian fluids or non-continuum fluids. In this paper, we simulate the electroosmotic flow in nanochannel considering no limit if it is neither continuum nor non-nonewtonian. As is known, the DPD method has several important advantages compared with the classical molecular dynamics... 

    Simulation of heat transfer in nanoscale flow using molecular dynamics

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 1563-1568 ; 9780791854501 (ISBN) Darbandi, M ; Abbasi, H. R ; Sabouri, M ; Khaledi Alidusti, R ; Sharif University of Technology
    2010
    Abstract
    We investigate heat transfer between parallel plates separated by liquid argon using two-dimensional molecular dynamics (MD) simulations incorporating with 6-12 Lennard-Jones potential between molecule pairs. In molecular dynamics simulation of nanoscale flows through nanochannels, it is customary to fix the wall molecules. However, this approach cannot suitably model the heat transfer between the fluid molecules and wall molecules. Alternatively, we use thermal walls constructed from the oscillating molecules, which are connected to their original positions using linear spring forces. This approach is much more effective than the one which uses a fixed lattice wall modeling to simulate the... 

    Effects of depth variation of vegetation density on vertical mixing

    , Article Environmental Hydraulics - Proceedings of the 6th International Symposium on Environmental Hydraulics, 23 June 2010 through 25 June 2010 ; Volume 1 , June , 2010 , Pages 247-252 ; 9780415595452 (ISBN) Ghazvinizadeh, S ; Jamali, M ; Sharif University of Technology
    2010
    Abstract
    This paper discusses an experimental study of vertical mixing in an aquatic canopy. Vertical variation of physical characteristics of stems is fairly observed in the field and leads to variation in frontal area. This can affect both the flow and the mixing process.We experimentally investigated the effects of vertical density variation on both flow and vertical diffusion at high Reynolds numbers (turbulent flow range). Using rigid cylinders, we simulated step-like density variation in a flume. Vertical mixing coefficient was measured by recording vertical mixing of dye in the flume. The results indicate that vertical mixing coefficient decreases as density increases in depth. Velocity... 

    Thermodynamic analysis of slip flow forced convection through a microannulus

    , Article Journal of Thermophysics and Heat Transfer ; Volume 24, Issue 4 , Oce-Dec , 2010 , Pages 785-795 ; 08878722 (ISSN) Sadeghi, A ; Asgarshamsi, A ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    The present investigation is devoted to the second law of thermodynamics analysis of steady-state hydrodynamically and thermally fully developed laminar gasflow in a microannulus with constant but different wall heat fluxes. Slip velocity and temperature jump boundary conditions are usedtodescribe rarefaction effects. Viscous heating is also included for both the wall cooling and heating cases. Using already available velocity profile, closedform expressions are obtained for the transverse distribution of temperature and entropy generation rates. The results demonstrate that the effectof the wall heatfluxes ratioonentropy generation is negligible atlarge valuesofthe group parameter and...