Loading...
Search for: viscosity-ratio
0.005 seconds

    Drag Reduction by Blowing and Creating a Film of a Secondary Lower Viscosity Fluid-Large Eddy Simulation

    , M.Sc. Thesis Sharif University of Technology Ghaffarian, Ali (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Ramezanizadeh, Mahdi (Supervisor)
    Abstract
    Drag reduction is one of the most important topics in aerodynamics. Several techniques have been represented to reduce this force, such as surface roughness reduction, blowing, suction, cooling the fluid, etc. Blowing and creating a film of a secondary lower viscosity fluid is the technique used here. In our computations, we used large eddy simulation approach considering viscosity ratio variations effects. Investigations were performed for multiple squared cross sectional jets inclined normally into a turbulent cross flow. Each jet generates a pair of counter rotating vortex pair (CRVP) at its downstream while entering the cross flow. Two horseshoe vortices and a couple of wake vortices... 

    Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method

    , Article Journal of Petroleum Science and Engineering ; Volume 77, Issue 1 , 2011 , Pages 135-145 ; 09204105 (ISSN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    Abstract
    Relative permeability curves have practical implications in petroleum reservoir simulations. Study of the effects of reservoir wettability, pore shape geometry, and viscosity ratio of flowing fluids on the relative permeabilities is of great importance in reservoir modeling. In this paper, lattice Boltzmann method (LBM) is employed for analyzing the two-fluid flow in rigid porous media. The developed LBM code proved to be a robust numerical tool for analyzing the factors that influence the relative permeabilities of two immiscible fluids flowing through porous media. The numerically derived relative permeability curves demonstrate that in neutrally wet reservoirs, the effect of viscosity... 

    Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods

    , Article Scientia Iranica ; Volume 18, Issue 2 B , 2011 , Pages 231-240 ; 10263098 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2011
    Abstract
    Recently, a hybrid Lattice Boltzmann Level Set Method (LBLSM) for two-phase incompressible fluids with large density differences, in cases of negligible or a priori known pressure gradients, has been proposed. In the present work, the mentioned LBLSM method is extended to take into account pressure gradient effects. The lattice Boltzmann method is used for calculating velocities, the interface is captured by the level set function, and the surface tension is replaced by an equivalent body force. The method can be applied to simulate two-phase fluid flows with density ratios up to 1000 and viscosity ratios up to 100. In order to validate the method, the evolution and merging of rising bubbles... 

    Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium

    , Article Physics of Fluids ; Volume 29, Issue 6 , 2017 ; 10706631 (ISSN) Rokhforouz, M. R ; Akhlaghi Amiri, A ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. Thiswork presents the results of a newpore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with... 

    Numerical investigation of two phase flow in micromodel porous media: effects of wettability, heterogeneity, and viscosity

    , Article Canadian Journal of Chemical Engineering ; Volume 95, Issue 6 , 2017 , Pages 1213-1223 ; 00084034 (ISSN) Maaref, S ; Rokhforouz, M. R ; Ayatollahi, S ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    The aim of the present work is to assess the effects of wettability, heterogeneity, and viscosity differences on water-oil displacement process in micromodel porous media through numerical modelling. The two-phase flow was simulated by Cahn-Hilliard phase field method (PFM) using a finite element package. The micromodel was initially saturated with oil (wetting phase) and oil was produced through invasion of the displacing phase into the matrix. The computed oil and water saturations were in good agreement with those obtained by the visual flooding experiment. Using the validated model, sensitivity analysis was performed to investigate the effects of different wettability states,... 

    Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 428 , 2017 , Pages 457-463 ; 03048853 (ISSN) Amani, M ; Amani, P ; Kasaeian, A ; Mahian, O ; Kasaeian, F ; Wongwises, S ; Sharif University of Technology
    Abstract
    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe2O4/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is... 

    Incorporation of viscosity scaling group into analysis of MPMS index for laboratory characterization of wettability of reservoir rocks

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 7, Issue 1 , 2017 , Pages 205-216 ; 21900558 (ISSN) Mirzaei Paiaman, A ; Saboorian Jooybari, H ; Masihi, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Wettability is a key parameter affecting petrophysical properties of reservoir rocks. Mirzaei-Paiaman et al. (Energy Fuels 27:7360–7368, 2013) presented an index (referred to as MPMS) for laboratory characterization of wettability of native- or restored-state reservoir rock samples. To use this index two counter-current spontaneous imbibition (COUCSI) experiments are needed, one on the native- or restored-state core sample and another on the strongly water-wet (SWW) reference system. Slope analysis of recovery data in these two systems gives inputs for determination of MPMS index. The two systems must have the same pore structure, initial water saturation, and viscosity ratio. The case of... 

    Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method

    , Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 Sadeghi, M ; Pak, A ; Sadeghi, H ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2020
    Abstract
    Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller (RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow...