Loading...
Search for: waste-treatment
0.01 seconds
Total 64 records

    Investigation of Sulfate Reducing Bacteria for Treatment of Wastewaters Polluted by Heavy Metals

    , M.Sc. Thesis Sharif University of Technology Kakavand, Nargess (Author) ; Kariminia Hamedani, Hamid Reza (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    The main objective of this research was to evaluate the application of a new strain of Brevundimonas naejangsanensis which is newly identified sulfate-reducing bacteria (SRB), in chromium(VI) removal in contaminated wastewater. A laboratory scale packed bed reactor (PBR) was fabricated and operated to study the bacteria’s feasibility on chromium(VI) reduction and removal. The reactor was packed with polyurethane foam cubes and operated under different feeding and operating conditions of HRT, COD/〖SO〗_4^(2-) ratio and influent chromium(VI) concentration. A maximum chromium removal of 94.6% was achieved in the PBR when operated at an HRT of 24 h with COD/〖SO〗_4^(2-) ratio of .70 and influent... 

    Optimization of Hybrid Anaerobic/Aerobic Bioreactor for Phosphate Removal

    , M.Sc. Thesis Sharif University of Technology Kavousi, Rezvan (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Discharging treated or raw waste water in to surface water may cause lots of serious problems, including growth of algae, as a result of the presence of nutrients in waste water.algae decrease the concentration of dissolve oxygen in water.phosphorus removal from waste water is of absolute necessity. according to the standards set by the environmental organization, discharge the untreated waster water in to the surface water is not allowed. on the other hand, given manager facilities of deprived area,effort is channeled to reach the desired result through designing the simplest treatment systems. anaerobic-aerobic systems have remarkably been used for many years in the treatment of urban and... 

    Immobilization of Laccase onto Graphene Oxide-based Nano-Composites for Decolorization of Colored Wastewaters

    , Ph.D. Dissertation Sharif University of Technology kashefi, Saeed (Author) ; Borghei, Mehdi (Supervisor) ; Mahmoodi, Neyazmohammad (Supervisor)
    Abstract
    Using free laccase, enzymatic decolorization of two azo dyes were optimized. The optimum conditions with the aim of maximizing the decolorization of AB92 dye (92.30%) were: dye concentration = 11.85 mg L-1, pH = 5.1, and enzyme concentration = 98.37 mg L-1. While, these conditions to achieve the maximum decolorization yield of DR23 (95.60%) were: dye concentration = 17.68 mg L-1, pH 3.7 and enzyme concentration =97.89 mg L-1.In the second part, the laccase enzyme was covalently immobilized onto GO nanosheets. At the concentration of graphene oxide and laccase enzyme equal to 1 mg mL-1 and 0.9 mg mL-1, respectively, the enzyme loading was 156.5 mg g-1 and the immobilization efficiency was... 

    Waste Water Purification of the Isfahan Zirconium Production Plant (ZPP) by Membrane Process

    , M.Sc. Thesis Sharif University of Technology Chaichi, Mahdieh (Author) ; Samad Fam, Mohammad (Supervisor) ; Yavari, Ramin (Supervisor) ; Haji Hosseini, Majid (Co-Supervisor)
    Abstract
    Isfahan Zirconium Production Plant (ZPP) is one of the most important plants in the nuclear industry of Islamic Republic of Iran. The wastewater of this plant contains high values of Sodium, Chloride, Nitrate and low values of Calcium, Magnesium, Zinc and Zirconium ions. Its release has been banned by international and national law because of the dangers and toxicity of its ions for the environment and living organisms. Therefore, its refinement as a compensation of Iran’s water resources in agriculture and drinking water has received a major consideration. Among the common methods to removal of these ions, membrane process method is selected due to it's major benefits such as not producing... 

    Design & Manufacture of IGF/DGF Plant in Semi Industrial Scale for Wastewater Separation

    , M.Sc. Thesis Sharif University of Technology Hemmati, Amir Hossein (Author) ; Ghotbi, Siroos (Supervisor)
    Abstract
    The increasing demand for energy forced to production of oil as one of the main sources of energy. Along with the increase in oil production, the proportion of water produced with oil is increasing relative to the oil produced. On the other hand, environmental restrictions for the discharge of industrial effluents into the environment are becoming more and more stringent every day. Before discharging the effluent into the environment, petroleum must be removed. The complexity of these issues demonstrates the need to develop new technologies and improve the efficiency of existing technologies. Gas flotation are among the technologies adopted in the field that have been used throughout the... 

    Investigation of the Membrane Characteristics on the Performance of Microbial Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Nikousefat , Omid (Author) ; Torkian, Ayoub (Supervisor) ; Gobal, Freydoon (Supervisor)
    Abstract
    The process of human populations growth, limited resources of fossil fuels and its environmental consequences have driven the international community to Renewable Energy. Microbial fuel cell (MFC) has ability of simultaneous wastewater treatment and electricity generation (Energy). This technology can be considered as one of the proposed solutions to reduce costs of wastewater treatment and power generation. Separators are one of the major components of the MFC that have direct impact on cell performance. On the other hand, high costs of the conventional types have caused to limiting development of the MFC in the last decade.
    In this study, inexpensive and available glass wool membrane... 

    Immobilization of Enzymes to Nanoparticles for use in Wastewater Treatment

    , M.Sc. Thesis Sharif University of Technology Nisan, Roya Sadat (Author) ; Alemzadeh, Iran (Supervisor)
    Abstract
    Nowadays , application of enzymes as biocatalysts in wastewater treatment processes is increasing. It is economically important to reuse enzymes and increase their stability in these types of processes. Therefore, was immobilization of enzymes and using them in wastewater treatment have a great importance.In this project, Horseradish peroxidase enzyme, whose effect on phenol removal reactions in other studies has been proven before, was immobilized on the alginate-coated magnetic nanoparticles, to investigate the effect of immobilization on the stability and function of this enzyme for phenol removal. The enzyme was immobilized at the temperature of 25 ° C and pH = 8, according to the data... 

    Sustainable Wastewater Treatment: Indicators and Technologies

    , M.Sc. Thesis Sharif University of Technology Nouri Goukeh, Mojtaba (Author) ; Abrishamchi, Ahmad (Supervisor) ; Dansh-Yazdi, Mohammad (Co-Supervisor)
    Abstract
    An increase of wastewater treatment plants and wastewater treatments methods have increased the importance of selection of best wastewater treatment alternative. This selection should not be merely based on the quality of effluent, but the whole factors (economic, environmental, technical and social factor) should be considered. Different methods for the assessment of wastewater treatment plants is used. For example, life cycle assessment is used for the evaluation of environmental impacts or cost-benefit analysis are used for economic analysis. But, for selection of the most sustainable technology whole factors should be evaluated together. Multi-criteria decision-making methods can be... 

    Design and Optimization of Microbial Fuel Cell (MFC) for Organic Pollution

    , M.Sc. Thesis Sharif University of Technology Nabavian, Alborz (Author) ; Vossoughi, Manouchehr (Supervisor) ; Seif Kordi, Ali Akbar (Supervisor)
    Abstract
    A Microbial fuel cell is a Bioreactor in which chemical bands are broken and their energy convert to electricity by bio-catalysts such as microorganisms and enzymes. Depletion of energy resources encouraged researchers to investigate microbial fuel cell as a power bio-resource. MFCs produce electricity or hydrogen without any net carbon emission. Nowadays, real applications of microbial fuel cells are limited because their power density level is very low (about 1000 mW/m2). Many research projects are running to modify MFCs operation and optimize its costs. The most important application of MFCs is electricity production, hydrogen production, waste water treatment and BOD5 biosensor. In this... 

    Preparation of Polycarbonate Membrane for Industrial Wastewater Treatment in Membrane Bioreator

    , M.Sc. Thesis Sharif University of Technology Nazemi Dashtarjandi, Saeed (Author) ; Mousavi, Abbas (Supervisor) ; Bastani, Dariush (Supervisor)
    Abstract
    Today, membrane bioreactors (MBRs) process is one of the most important options in industrial and municipal wastewater treatment. In MBRs, membrane has an essential influence on their performance. In this study, polycarbonate was exploited as membrane to evaluate its performance in MBR since it has excellent mechanical properties. However, polycarbonate is brittle and breaks at low elongation at room temperature. Solution blending was utilized to improve polycarbonate’s properties. Blending membrane was characterized and assessed by scanning electron microscopy (SEM) and tensile strength. Polycarbonate solution blending with polyurehatne which has excellent toughness and flexibility enhance... 

    Design of a Desalination System with High Recovery Using Membrane Based Systems

    , M.Sc. Thesis Sharif University of Technology Naderi Beni, Ali (Author) ; Mousavi, Ali (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    Osmotically assisted reverse osmosis (OARO) assimilates high efficiency due to non-thermal processes and accessing high salinity. This makes it suitable for high water recovery for the purpose of zero- and minimal liquid discharge desalination. Moreover, forward osmosis (FO) has low fouling efficiency which makes the operating costs of cleaning and replacement lower. This study aims at incorporating OARO and FO in a novel configuration with multiple inlet of the diluted draw solution to the regeneration section. Pinch analysis with simplifying assumptions was carried out for FO and OARO standalone stages. The results showed that pinch point in FO resides either on the beginning or at the end... 

    Influence of an Anaerobic Stage on Membrane Fouling in MBR

    , M.Sc. Thesis Sharif University of Technology Mehrazaran, Mehdi (Author) ; Borghei, Mehdi (Supervisor) ; Musavi, Abbas (Co-Advisor)
    Abstract
    Clean water is a growing need for humanity all around the Earth. Due to the shortage of clean water resources in most parts of our planet, wastewater treatment and reuse has been of great value in past decades. Much research has been conducted to improve treatment systems. One of the most recent advancements in water and wastewater treatment field is application of membrane bioreactor systems. Despite many advantages of these systems, membrane fouling has been the main drawback since the creation and application of them. The main objective of this research is to investigate the probable fouling reduction and head loss in flat sheet UF membranes due to the application of an anaerobic... 

    Treatment of Surfactant Wastewater by IFAS Bioreactors

    , M.Sc. Thesis Sharif University of Technology Moradian, Amin (Author) ; Borgheei, Mahdi (Supervisor) ; Moslehi, Parivash (Supervisor)
    Abstract
    In the modern societies, wastewater treatment is essential in achieving high level of standard in environmental protection and disposal. Recently, many researches are performed to study the surfactants’ biological decomposition in wastewater treatment process. In this project, fixed bed aerobic reactors are used in order to remove surfactant from wastewater. Integrated fixed film activation sludge reactor (IFAS) is used to remove surfactants and organic matters. It also used to study the capability of micro organisms in organic load removal in fixed bed biofilm for biological treatment of industrial wastewater. Pumice stone were used as the support in the reactor. The pumice stone is a... 

    Application of Membrane Distillation Technology for Treating Saline Water of Sarcheshme Copper Refinery

    , M.Sc. Thesis Sharif University of Technology Mahmoodi Meymand, Negar (Author) ; Shaygan, Jalaleddin (Supervisor)
    Abstract
    Sarcheshme Copper refinery is using ion exchange columns to supply deionized water to the refinery. Every day, 240 cubic meters of waste water from ion exchange columns process are released in nature. The main purpose of this research is to use membrane distillation to purify this wastewater, which reduces the fresh water requirement and at the same time prevents environmental pollution. Membrane distillation technology is capable to purify the high salinity wastewater that other conventional membrane technologies are not able to purify. In this study, the PTFE membrane was used due to its high permeability and low surface energy with pore size of 0.22 μm and membrane thickness of 0.2 to... 

    Investigation of Highly Concentrated Phenolic Wastewater Treatment in a Membrane Biological Reactor (MBR), and Evaluation of Furfural upon Phenol Biodegradation by an Acclimated Activated Sludge

    , M.Sc. Thesis Sharif University of Technology Mohseni, Mojtaba (Author) ; Borghei, Mehdi (Supervisor)
    Abstract
    Phenolic compounds are hazardous pollutants that are released into environment through wastewater discharges from variety of industries. Although good biodegradability has been reported at low concentrations, but at higher concentrations phenols are known to be antibacterial. In this study the Membrane Biological Reactor (MBR) with submerged hallow fiber membrane was operated at 25±2 ºC and pH=7.5±0.5 to treat a synthetic wastewater containing high phenol concentration (up to 5.9 g/l). Removal efficiency of phenol and COD were evaluated at four various “Hydraulic Retention Times” (HRT) of 24, 12, 8 and 4 hours. To test the tolerance of the bioreactor to phenol concentration various loading... 

    Zinc based Metal-organic Frame Work Nanomaterial to Remove Contaminant from Water

    , M.Sc. Thesis Sharif University of Technology Mohebali Nezhadian, Mahnaz (Author) ; Ghotbi, Cyrus (Supervisor) ; Khorashe, Farhad (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor)
    Abstract
    In present work, we fabricated novel heterojunction magnetic composite and the goo visible-light-harvesting photocatalysts through integration of ZnFe2O4 and MIL-53 by facile solvothermal method. To understand physical and chemical structure prepared material and morphology of samples, The XRD,FTIR, FESEM, DRS and VSM analysis were carried out. The ZFO/M53Fe/vis-light system reveled 92.3% dye degradation which enhanced photo catalyst reactivity for the decolorization of Direct red 23 as anionic dye under irraditation of LED lamp through AOP environment friendly technology, which are significantly higher than those of pure ZFO and M53Fe semiconductors. more ever ,aforementioned composite... 

    Study and Optimization of Operating Parameters of Nanophotocatalytic Wastewater Treatment Process

    , M.Sc. Thesis Sharif University of Technology Qanbarzadeh, Mojtaba (Author) ; Soltanieh, Mohammad (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Feilizadeh, Mehrzad (Co-Advisor)
    Abstract
    In this study, we investigate the effect of adding potassium persulfate (PDS) (K2S2O8) and hydrogen peroxide (H2O2) to E.coli (as a model microorganism) photocatalytic removal system in the presence of the TiO2-P25 as photocatalyst and UV irradiation. In this regard, the PDS and H2O2 oxidants were added separately in the different levels of pH and photocatalyst loading under UV irradiation. The experimental points were determined based on the central composite design (CCD) and in order to study the main and the interactive effects of the photocatalyst concentration (mg/L), oxidant concentration (mg/L) and the pH on the final concentration of E.coli (cfu/mL), a response surface model (RSM)... 

    Investigation of Application of Nano-Photocatalytic Degradation for Industrial Wastewater Treatmen

    , M.Sc. Thesis Sharif University of Technology Falahati, Mohammad (Author) ; Roosta Azad, Reza (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    The main objective of this project is the deposition of photo-catalysts on cement and concrete blocks with an emphasis on commercialization. We started with an extensive study of common methods introduced in previous literature, and conclude with a number of suggestions for industrialization. First, slurry and sol-gel deposition of the photo-catalysts on blocks of type 2 commercial cement which is one of the most used materials in construction of buildings and waste-water treatment plants has been examined to reach a method of sample formation. Due to the simplicity of common methods and low quality of formed samples (less than 5 percent aging efficiency), the obtained experience was used to... 

    Studying the Treatment of Pharmaceutical Waste, Using Moving Bed Biofilm Reactor

    , M.Sc. Thesis Sharif University of Technology Fatehifar, Maryam (Author) ; Borgheie, Mehdi (Supervisor)
    Abstract
    Pharmaceutical waste has attracted considerable attention, in the Past two decades. These pollutants had not previously been detected in the environment. In fact, the concentration of pharmaceuticals became a matter of concern after the increase in the production and consumption of drugs. Nowadays, considering their higher consumption and more developed detection technologies, they are found in waste water, treated water, rivers, etc. The purpose of this research is to study treatment of a Synthetic waste water contaminated by Diclofenac and Ibuprofen in a Moving Bed Biofilm Reactor. An aerobic Moving Bed Biofilm Reactor (MBBR) with the volume of 8.5 liters and Kaldness packing filling ratio... 

    Experimental Studies for Construction of a Microbial Fuel Cell (MFC) in Continuous Flow Mode

    , M.Sc. Thesis Sharif University of Technology Sadeghi Haskoo, Mohammad Amin (Author) ; Vossoughi, Manoochehr (Supervisor) ; Aalemzadeh, Iran (Supervisor)
    Abstract
    In this research performance of microbial fuel cells (MFCs) in continuous flow mode was studied. Different anodic chambers were tested and it was found that granular activated carbons (GACs) produced the highest power density (1228 mW/m3) in comparison with multiple anodes (731 mW/m3), single anode (294 mW/m3) and polymeric packings (40 mW/m3). It was also shown that in a plug-anodic chamber (PAC) the power output is reduced by reducing agitation of anodic volume. Adding more GACs to anodic chamber results in power increase, however by increasing occupied volume from 80% to 100% the power increase was negligible in result of cathodic reactions limitations. Feed flowrate was increased from...