Loading...
Search for: wrist-joint
0.01 seconds

    MEG based classification of wrist movement

    , Article Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 ; 2009 , Pages 986-989 ; 1557170X (ISSN) ; 978-142443296-7 (ISBN) Montazeri, N ; Shamsollahi, M. B ; Hajipour, S ; Sharif University of Technology
    Abstract
    Neural activity is very important source for data mining and can be used as a control signal for brain-computer interfaces (BCIs). Particularly, Magnetic signals of neurons are enriched with information about the movement of different part of the body such as wrist movement. In this paper, we use MEG (Magneto encephalography) signals of two subjects recorded during wrist movement task in four directions. Data were prepared for BCI competition 2008 for multiclass classification. Our approach for this classification problem consists of PCA as a noise reduction method, ULDA for feature reduction and various linear classifiers such as Bayesian, KNN and SVM. Final results (58%-62% for subject 1... 

    Wrist-RoboHab: A robot for treatment and evaluation of brain injury patients

    , Article IEEE International Conference on Rehabilitation Robotics, 27 June 2011 through 1 July 2011, Zurich ; 2011 ; 19457898 (ISSN) ; 9781424498628 (ISBN) Baniasad, M. A ; Farahmand, F ; Ansari, N. N ; Sharif University of Technology
    2011
    Abstract
    This article, introduces a new haptic robot, wrist-RoboHab, for upper limb rehabilitation of post stroke, orthopedic and Parkinson patients., The robot is designed for hand movement therapy and could be used for both treatment and evaluation purposes in three operational states; forearm supination/pronation, wrist flexion/extension and ulnar/radial deviation. At first the mechanical design and control system are described. Then the results of a case study are demonstrated. Clinical results, showed an improvement in Fugle-Meyer, AROM, power and the biomechanical assessment of the spasticity in a chronic patient. Furthermore, it was approved that the robot can have a good interaction with... 

    Fuzzy control of a hand rehabilitation robot to optimize the exercise speed in passive working mode

    , Article Studies in Health Technology and Informatics ; Vol. 163 , 2011 , pp. 39-43 ; 09269630 (ISSN) ; 9781607507055 (ISBN) Baniasad, M. A ; Akbar, M ; Alasty, A ; Farahmand, F ; Sharif University of Technology
    Abstract
    The robotic rehabilitation devices can undertake the difficult physical therapy tasks and provide improved treatment procedures for post stroke patients. During passive working mode, the speed of the exercise needs to be controlled continuously by the robot to avoid excessive injurious torques. We designed a fuzzy controller for a hand rehabilitation robot to adjust the exercise speed by considering the wrist angle and joint resistive torque, measured continuously, and the patient's general condition, determined by the therapist. With a set of rules based on an expert therapist experience, the fuzzy system could adapt effectively to the neuromuscular conditions of the patient's paretic hand....