Loading...
Search for: yarn
0.01 seconds
Total 175 records

    ZnO-PEDOT core-shell nanowires: An ultrafast, high contrast and transparent electrochromic display

    , Article Solar Energy Materials and Solar Cells ; Volume 145 , 2016 , Pages 200-205 ; 09270248 (ISSN) Kateb, M ; Safarian, S ; Kolahdouz, M ; Fathipour, M ; Ahamdi, V ; Sharif University of Technology
    Elsevier 
    Abstract
    We report fabrication of ultrafast and high contrast transparent electrochromic device desired for display application using nanostructured electrode. To this end, poly (3,4-ethylenedioxythiophene) (PEDOT) nanotubes were synthesized by simple electrochemical polymerization method on hydrothermally grown ZnO nanowires array as electrode. The PEDOT nanotubes of 20 nm average wall thickness characterized by SEM, TEM and EDS. The manufactured cell was subjected to electrochemical test and spectrophotometery that showed high contrast of 54% during ultrafast switching time of <2.2 ms. In addition, high coloration efficiency of 234 cm2/C, ultrahigh diffusion coefficient of 2.01×10-4 cm2/s and... 

    Visible light switchable bR/TiO2 nanostructured photoanodes for bio-inspired solar energy conversion

    , Article RSC Advances ; Volume 5, Issue 24 , Jan , 2015 , Pages 18642-18646 ; 20462069 (ISSN) Naseri, N ; Janfaza, S ; Irani, R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Today, regarding the limitation and environmental side effects of fossil fuel resources, solar hydrogen production is one of the main interests in the energy research area. The development of visible light sensitized semiconductors based on non-toxic components, low cost and available bio-species is an ongoing approach for H2 generation based on water splitting reactions. Here, two different morphologies of TiO2 photoanodes, nanoparticulated and nanotubular, have been modified with simply extracted bacteriorhodopsin (bR) without any linker. Achieving a significant enhancement in photoconversion efficiency of TiO2 photoanodes, η% was increased from 2.9 to 16.5 by bR addition to the TiO2... 

    Vibration and Stability Analysis of DWCNT-Based Spinning Nanobearings

    , Article International Journal of Structural Stability and Dynamics ; 2016 ; 02194554 (ISSN) Firou Abadi, R. D ; Mohammad Khani, H ; Rahmanian, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2016
    Abstract
    This paper aims at investigating free vibrations and stability of double-walled carbon nanotube (DWCNT)-based spinning nanobearings. The so-called nanobearing consists of two coaxial carbon nanotubes (CNTs) where either of the two CNTs can be a rotor while the other takes the role of stator. Euler–Bernoulli beam model along with the Eringen’s nonlocal theory of elasticity are employed to obtain governing equations of transverse vibrations for the CNTs. The coupling of the two CNTs originates from the van-der-Waals (vdW) forcing present in the interface of the two CNTs. The coupling is taken into account as distributed spring foundation with an equivalent elastic stiffness. Based on the... 

    Unified modeling and experimental realization of electrical and thermal percolation in polymer composites

    , Article Applied Physics Reviews ; Volume 9, Issue 4 , 2022 ; 19319401 (ISSN) Sarikhani, N ; Arabshahi, Z. S ; Saberi, A. A ; Moshfegh, A. Z ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Correlations between electrical and thermal conduction in polymer composites are blurred due to the complex contribution of charge and heat carriers at the nanoscale junctions of filler particles. Conflicting reports on the lack or existence of thermal percolation in polymer composites have made it the subject of great controversy for decades. Here, we develop a generalized percolation framework that describes both electrical and thermal conductivity within a remarkably wide range of filler-to-matrix conductivity ratios (Y f / Y m), covering 20 orders of magnitude. Our unified theory provides a genuine classification of electrical conductivity with typical Y f / Y m ≥ 10 10 as... 

    Unidirectional transport of water through an asymmetrically charged rotating carbon nanotube

    , Article Journal of Physical Chemistry C ; Volume 121, Issue 42 , 2017 , Pages 23649-23658 ; 19327447 (ISSN) Khodabakhshi, M ; Moosavi, A ; Sharif University of Technology
    Abstract
    Achieving a high speed, unidirectional water flow through carbon nanotubes (CNTs) is a key factor in designing novel nanofluidic devices. In this study, utilizing molecular dynamics (MD) simulations, we propose a novel nanoscale water pump for directed water transportation using charged rotating CNTs. Two basic conditions for stable water flow, including thermodynamic nonequilibrium and spatial asymmetry, are provided by introducing partial charges on carbon atoms of the channel with asymmetric patterns and its rotation, respectively. We demonstrate that the performance of the water pump is proportional to the gradient of a linear charge distribution and angular velocity of the rotation. Our... 

    Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method

    , Article Diamond and Related Materials ; Volume 90 , 2018 , Pages 93-100 ; 09259635 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Ultrafine-grained Al-CNT (2 and 4 vol%) composites were successfully fabricated using the flake powder metallurgy and hot pressing route, and the microstructure and tribological properties of the produced composites were studied. The results showed that the coefficient of friction and the wear rate of Al decrease with the addition of the CNT reinforcement. A carbon-rich film formed on the worn surfaces during wear test, which prevented the Al oxidation and yielded the self-lubricating effect for the composites. This improvement in the wear behavior of the composites can be attributed to the simultaneous effects of the ultrafine-grained matrix and strengthening and self-lubricating properties... 

    Tribological characteristics of rubber-based friction materials

    , Article Tribology Letters ; Volume 41, Issue 2 , October , 2011 , Pages 325-336 ; 10238883 (ISSN) Arjmand, M ; Shojaei, A ; Sharif University of Technology
    2011
    Abstract
    This article deals with the rubber-based friction materials (RBFMs) which can be used in brake system. The physico-mechanical and tribological properties of a series of fiber filled RBFMs containing steel wool and aramid pulp at different concentrations along with a fiber-free reference material were characterized. Rubber-glass transition induced at higher sliding velocities was identified based on the friction fade behavior of the RBFMs. The rubber-glass transition which is inherently originated by viscoelastic response of polymeric binder was found to be influential on the tribological properties of the RBFMs. It was revealed that steel wool increased coefficient of friction (COF) and... 

    Toughening of epoxy nanocomposites: Nano and hybrid effects

    , Article Polymer Reviews ; Volume 56, Issue 1 , 2016 , Pages 70-112 ; 15583724 (ISSN) Marouf, B ; Mai, Y. W ; Bagheri, R ; Pearson, R. A ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    In this paper, we review recent progress made in the field of epoxy-based binary and ternary nanocomposites containing three-, two-, and one-dimensional (i.e., 3D-, 2D-, and 1D) nano-size fillers with a special focus on their fracture behaviors. Despite investigations conducted so far to evaluate the crack-resistance of epoxy nanocomposites and attempts made to clarify the controlling toughening mechanisms of these materials, some questions remain unsolved. It is shown that silica nanoparticles can be as effective as rubber particles in improving the fracture toughness/energy; but incorporation of carbon nanotubes (CNTs) or clay platelets in epoxy matrices delays crack growth only modestly.... 

    Toughening mechanisms of SiC-bonded CNT bulk nanocomposites prepared by spark plasma sintering

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 71 , February , 2018 , Pages 61-69 ; 02634368 (ISSN) Dolati, S ; Azarniya, A ; Eslami Shahed, H ; Madaah Hosseini, H. R ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this work, silicon carbide (SiC) was utilized as a binding agent to fuse carbon nanotubes (CNTs) into highly tough dense CNT bulk nanocomposites through spark plasma sintering (SPS) method. Phase studies were performed using x-ray diffraction analysis (XRD) and field-emission scanning electron microscopy (FESEM) and obtained results were verified by the microstructural evolution. Also, the optimum processing temperature was determined as 1600 °C at which the undesired allotropic phase transformation of SiC (β) → SiC (α) was avoided and single-walled CNTs (SWCNTs) were structurally preserved. Fracture toughness of the nanocomposite synthesized at optimum processing conditions was... 

    Titania nanotubes decorated with Zn-doped titania nanoparticles as the photoanode electrode of dye-sensitized solar cells

    , Article Energy Technology ; Volume 5, Issue 9 , 2017 , Pages 1571-1578 ; 21944288 (ISSN) Mokarami Ghartavol, H ; Afshar, A ; Mohammadi, M. R ; Chau Nan Hong, F ; Jeng, Y. R ; Sharif University of Technology
    Abstract
    We decorated Zn-doped TiO2-nanoparticle-based photoanodes with carbon nanotube (CNT)-derived TiO2 nanotubes (TNs) to enhance the power conversion efficiency of dye-sensitized solar cells (DSCs). X-ray photoelectron spectroscopy analysis verified that Zn ions, in the range of 0 to 1 at %, were successfully doped into the TiO2 lattice. Field-emission SEM and TEM images of the TNs, as derived from the sol–gel template-assisted route, revealed that a uniform TiO2 coating with a thickness of 60 to 120 nm was deposited on the surface of the CNT template through a noncovalent route. We observed that the cell efficiency improved from 6.80 for pure TiO2 to 7.52 for 0.75 at % Zn-doped TiO2... 

    Ti-rich TiO2 tubular nanolettuces by electrochemical anodization for all-solid-state high-rate supercapacitor devices

    , Article ChemSusChem ; Volume 12, Issue 17 , 2019 , Pages 4064-4073 ; 18645631 (ISSN) Qorbani, M ; Khajehdehi, O ; Sabbah, A ; Naseri, N ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Supercapacitors store charge by ion adsorption or fast redox reactions on the surface of porous materials. One of the bottlenecks in this field is the development of biocompatible and high-rate supercapacitor devices by scalable fabrication processes. Herein, a Ti-rich anatase TiO2 material that addresses the above-mentioned challenges is reported. Tubular nanolettuces were fabricated by a cost-effective and fast anodization process of Ti foil. They attained a large potential window of 2.5 V in a neutral electrolyte owing to the high activation energy for water splitting of the (1 0 1) facet. Aqueous and all-solid-state devices showed diffusion time constants of 46 and 1700 ms, as well as... 

    The role of ion partitioning in electrohydrodynamic characteristics of soft nanofluidics: Inclusion of EDL overlap and steric effects

    , Article Chemical Engineering Science ; Volume 190 , 2018 , Pages 443-458 ; 00092509 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, we aim to account for the partitioning of finite sized ions and electric double layer (EDL) overlapping effects on the electrostatics and hydrodynamics of soft nanofluidics by stablishing a modified Poisson-Boltzmann (MPB) equation enjoying mean field approach. The application of the present MPB equation enables us to describe the interaction between the steric effect and electrostatic repulsion of EDL ions due to permittivity difference of polyelectrolyte layer (PEL) and electrolyte solution. Utilizing the Debye-Hückel approximation pertinent to low surface potentials, we analytically derive the solutions of electric potential and velocity profiles of mixed electroosmotic and... 

    The Role of Carbon Nanotubes in Improving Thermal Stability of Polymeric Fluids: Experimental and Modeling

    , Article Industrial and Engineering Chemistry Research ; Volume 55, Issue 27 , 2016 , Pages 7514-7534 ; 08885885 (ISSN) Halali, M. A ; Ghotbi, C ; Tahmasbi, K ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    At harsh conditions of high pressure high temperature (HPHT), polymers undergo thermal degradation leading to serious loss in fluid rheological and filtration properties. Nanoparticles are the most promising additives proposed to address this challenge. The stability of nanofluids is perused from various facets including rheological and filtration properties, shale stability, and zeta potential. The presence of nanoparticles could amazingly reduce the filtration at high temperatures even by 95%, and it also had a conspicuous effect on shale stability, thermal conductivity, and zeta potential. Experimental data were fit to rheological models to determine the best models describing the... 

    Thermo acoustic study of carbon nanotubes in near and far field: Theory, simulation, and experiment

    , Article Journal of Applied Physics ; Volume 117, Issue 9 , 2015 ; 00218979 (ISSN) Asadzadeh, S. S ; Moosavi, A ; Huynh, C ; Saleki, O ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    Carbon nanotube webs exhibit interesting properties when used as thermo-acoustic projectors. This work studies thermo-acoustic effect of these sound sources both in near and far field regions. Based on two alternative forms of the energy equation, we have developed a straightforward formula for calculation of pressure field, which is consistent with experimental data in far field. Also we have solved full 3-D governing equations using numerical methods. Our three-dimensional simulation and experimental data show pressure waves are highly affected by dimensions of sound sources in near field due to interference effects. However, generation of sound waves in far field is independent of... 

    Thermal buckling analysis of bridged single walled carbon nanotubes using molecular structural mechanics

    , Article Journal of Applied Physics ; Volume 117, Issue 11 , 2015 ; 00218979 (ISSN) Firouz Abadi, R. D ; Badri Kouhi, E ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    This paper is concerned with the stability analysis of bridged single walled carbon nanotubes (SWCNT) under temperature changes. A molecular structural mechanics model is utilized to investigate the free vibration frequencies and thermal buckling of SWCNT. In comparison with most of the previous studies, a temperature-variable thermal-expansion-coefficient is used that is negative under a certain temperature. Also thermal variation of Young's modulus of the CNTs is considered. Several studies are performed to investigate the critical temperature change due to heating and cooling of SWCNTs with different chiralities and slenderness ratios and the stability boundaries are determined  

    The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes

    , Article Journal of Power Sources ; Volume 183, Issue 2 , 1 September , 2008 , Pages 539-543 ; 03787753 (ISSN) Reyhani, A ; Mortazavi, S. Z ; Nozad Golikand, A ; Moshfegh, A. Z ; Mirershadi, S ; Sharif University of Technology
    Elsevier  2008
    Abstract
    The effects of HCl, HNO3, H2SO4 and HF acids on the purification and the electrochemical hydrogen storage of multi-walled carbon nanotubes (MWCNTs) were studied. The MWCNTs were synthesized on Fe-Ni catalyst by thermal chemical vapor deposition method. The X-ray diffraction and thermal gravimetric analysis results indicated that the MWCNTs purified by HF acid had the highest impurities as compared with the other acids. The N2 adsorption results at 77 K indicated that all the samples were mainly mesoporous and the purified MWCNTs by HF acid had the highest surface area as compared with the other acids. The hydrogen storage capacities of the purified MWCNTs by the following acids were in... 

    The effect of Pd addition to Fe as catalysts on growth of carbon nanotubes by TCVD method

    , Article Applied Surface Science ; Volume 254, Issue 20 , 15 August , 2008 , Pages 6416-6421 ; 01694332 (ISSN) Mortazavi, S. Z ; Reyhani, A ; Iraji zad, A ; Sharif University of Technology
    Elsevier  2008
    Abstract
    The effects of Pd addition to Fe (Pd/Fe = 0, 2.5/7.5, 5/5, 7.5/2.5 and 1) and growth temperatures (920 and 970 °C) on density, diameter and growth mode of carbon nanotubes (CNTs) have been studied. SEM observations and TG analyses confirmed that the CNT yields depend on Pd/Fe ratios as (7.5/2.5) > (5/5) > Pd > (2.5/7.5) > Fe at both growth temperatures. TEM data showed that addition of Pd results in tip growth mode. From Raman spectroscopy data, the order of samples' structural quality (I G /I D ratio) are Fe > Pd/Fe (2.5/7.5) > (5/5) > (7.5/2.5) > Pd and the I G /I D ratios increase by decreasing the growth temperature. Films with higher concentration of Fe (Pd/Fe = 0, 2.5/7.5) contain some... 

    The effect of nanoparticles on the mass transfer in Liquid–Liquid extraction

    , Article Chemical Engineering Communications ; Volume 202, Issue 5 , Sep , 2015 , Pages 600-605 ; 00986445 (ISSN) Mirzazadeh Ghanadi, A ; Heydari Nasab, A ; Bastani, D ; Seife Kordi, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    This article investigates the effect of nanoparticles on mass transfer in the liquid–liquid extraction for the chemical system of n-butanol–succinic acid–water. For this purpose, nanofluids containing various concentrations of ZnO, carbon nanotubes (CNT), and TiO2 nanoparticles in water, as base fluid, were prepared. To examine the flow mode effect on mass transfer rate, different fluid modes including dropping and jetting were employed in the process. Results show that mass transfer rate enhancement depends on the kinds and the concentration of nanoparticles and the modes of flow. It was observed that after adding nanoparticles, the mass transfer rate significantly increases up to two-fold... 

    Temperature-Dependent Comparison between Delay of CNT and Copper Interconnects

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 24, Issue 2 , 2016 , Pages 803-807 ; 10638210 (ISSN) Alizadeh, A ; Sarvari, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    The performance of gigascale integration chips improves by cryogenic technologies such as subambient cooling. In these conditions, interconnects may perform at temperatures as low as 50 K. However, the local temperature of interconnects could easily be as high as 600 K at high-temperature chips. In this brief, we investigated the impact of temperature on delay of local, intermediate, and global interconnects of International Technology Roadmap for Semiconductors Node 2024. This is done for different values of interconnect width and length, nanotube diameter, and percentage of metallic carbon nanotubes (CNTs) in a grown bundle. Results are compared with those of copper counterpart. We showed... 

    Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications

    , Article Ceramics International ; Volume 45, Issue 15 , 2019 , Pages 19275-19282 ; 02728842 (ISSN) Esmaeilnejad, A ; Mahmoudi, P ; Zamanian, A ; Mozafari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, apatite formation ability on TiO2 nanotubes (TNTs) synthesized by anodizing process were compared with TNTs decorated by MnO nanoparticles. The MnO nanoparticles used for decoration process were fabricated via thermal decomposition method. At first, it was strived to find the optimal condition of anodizing process and the effect of applied voltages (15 V, 20 V, and 25 V) and process times (15 min, 20 min, and 25 min) on the diameter of the synthesized TNTs was investigated. Results of microscopic characterizations showed that the completely uniform structure of nanotubes with a diameter in the range of about 100–130 nm was achieved after 20 min of anodizing process at an...