Loading...
Search for: zabihollah--a
0.008 seconds
Total 40 records

    A failure control method for smart composite morphing airfoil by piezoelectric actuator

    , Article Transactions of the Canadian Society for Mechanical Engineering ; Volume 35, Issue 3 , 2011 , Pages 369-381 ; 03158977 (ISSN) Zareie, S ; Zabihollah, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, a nonlinear Finite Element (FE) approach based on the layerwise displacement theory is utilized to obtain the interlaminar stresses due to buckling phenomena in unsymmetric laminated smart composite morphing structure. An On/Off control strategy is designed to control the snap-through phenomena. Due to cycling nature of applied load on morphing, these structures are vulnerable to failure due to fatigue. A failure control mechanism utilizing a piezoelectric actuator is developed to control the failure  

    Buckling control of morphing composite airfoil structure using multi-stable laminate by piezoelectric sensors/actuators

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 7 March 2011 through 9 March 2011, San Diego, CA ; Volume 7978 , 2011 ; 0277786X (ISSN) ; 9780819485403 (ISBN) Zareie, S ; Zabihollah, A ; Azizi, A ; Sharif University of Technology
    Abstract
    In the present work, an unsymmetric laminated plate with surface bonded piezoelectric sensors, and actuators has been considered. Piezoelectric sensor were used to monitor the load and deformation bifurcation occurs. Monitoring the shape and load of a morphing structure is essential to ascertain that the structure is properly deployed and it is not loaded excessively, thus, preventing structural to failure. A piezoceramic actuator is used to provide activation load and to force the structure to change its stability state from one to another. A non-linear finite element model based on the layerwise displacement theory considering the electro-mechanical coupling effects of piezoelectric... 

    Effect of shape memory alloy-magnetorheological fluid-based structural control system on the marine structure using nonlinear time-history analysis

    , Article Applied Ocean Research ; Volume 91 , 2019 ; 01411187 (ISSN) Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Marine structures, as key elements in the global energy network, constantly are subjected to harsh environmental loading conditions. Therefore, reliable yet efficient structural control mechanisms are required to ensure their safe functionality and structural stability. In the present work, a novel hybrid structural control element for marine structures has been designed in which the superelasticity effect of shape memory alloy (SMA) and damping controllability of magnetorheological fluid (MRF), as smart materials, have been combined. The novel system does not require huge external energy for activation and in addition, the system has the ability to be tuned for variable loading conditions.... 

    Recent advances in the applications of shape memory alloys in civil infrastructures: A review

    , Article Structures ; Volume 27 , 2020 , Pages 1535-1550 Zareie, S ; Issa, A. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. This paper presents a comprehensive review of the recent developments in the applications of SMA in civil infrastructures, including, steel, concrete, and timber structures. This review reveals the significance of SMA in civil infrastructures particularly, the enhancement of structural behavior and energy... 

    A novel shape memory alloy-based element for structural stability control in offshore structures under cyclic loading

    , Article Ships and Offshore Structures ; Volume 15, Issue 8 , 2020 , Pages 844-851 Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Wind and ocean waves highly influence the performance and functionality of structures, requiring an efficient control element. The structural behavior of one of the most recent structural control elements, namely shape memory alloys (SMA)-based control element, under cyclic loadings of oceans waves, has been investigated. Shape memory alloys are one of the attractive smart materials with the ability to return to the initial shape after experiencing large deformation. Experimental tests have been conducted to study the effects of cyclic loads on several specimens of the SMA wires. The SMA wires are being used in the SMA-based structural control system to dissipate the energy of external... 

    A semi-active SMA-MRF structural stability element for seismic control in marine structures

    , Article Applied Ocean Research ; Volume 100 , 2020 Zareie, S ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The stability and integrity of structures under indeterminant external loadings, particularly earthquakes, is a vital issue for the design and safe operation of marine and offshore structures. Over the past decades, many structural control systems, such as viscous-based systems, have been developed and embedded in marine and offshore structures, particularly oil platforms to maintain the stability and mitigate the seismic hazards. Rapid improvement in intelligent materials, including shape memory alloys (SMAs) and Magnetorheological fluid (MRF), have led to the design and development of efficient structural control elements. The present work aims to establish a framework for the structural... 

    Stability control of a novel frame integrated with an SMA-MRF control system for marine structural applications based on the frequency analysis

    , Article Applied Ocean Research ; Volume 97 , 2020 Zareie, S ; Alam, M. S ; Seethaler, R. J ; Zabihollah, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Structural integrity and ensuring the stability of steel frame structures, including marine and coastal structures, are the main challenges for designers in civil infrastructures, particularly in oil platforms, subjected to tough periodic and non-periodic environmental loading conditions. Variable loadings with different amplitudes and frequencies may lead to the stability of steel structures loss. In order to keep the stability of the steel structures and prevent possible damages, reliable yet efficient structural control systems are in demand. Conventional structural control systems need significant activation energy and/or in-depth users knowledge to be effective. Most recently, smart... 

    A study of pre-straining shape memory alloy (SMA)-based control elements subject to large-amplitude cyclic loads

    , Article Ships and Offshore Structures ; 2020 Zareie, S ; Zabihollah, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Dynamic environmental loads, such as winds and waves, make the stability of offshore structures at high risk, requiring reliable yet efficient control elements to ensure the stability of such structures under lateral loads. Among the variety of control elements that have been developed to enhance the stability of a structure, shape memory alloy (SMA)-based control elements are promising as they are low-cost, easy to embed into the main control element, and do not need an external power supply. However, cyclic loads may highly influence the performance and functionality of SMA-based elements. The present work investigates the effects of pre-straining SMA components in energy dissipation... 

    Design, validation, and application of a hybrid shape memory alloy-magnetorheological fluid-based core bracing system under tension and compression

    , Article Structures ; Volume 35 , 2022 , Pages 1151-1161 ; 23520124 (ISSN) Zareie, S ; Hamidia, M ; Zabihollah, A ; Ahmad, R ; Dolatshahi, K. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Civil infrastructures are vulnerable to catastrophic failures when exceeding the limit loading, requiring a reliable structural control mechanism, such as bracing systems, to enhance the integrity and stability of the structure. Bracing systems improve the performance of the structures by increasing the stiffness/strength of structures, the damping coefficient, and/or the energy absorption capacity. However, the functionality of these bracing systems is not controllable and may be altered after strong seismic events. Recently, the smart bracing systems based on multifunctional materials, particularly the shape memory alloy (SMA) and the magnetorheological fluid (MRF) have been developed. The... 

    Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) Zareh, S. H ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network... 

    Analytical modeling of a Minimally Invasive Surgery grasper actuated by shape memory alloy wires

    , Article International Conference on Robotics and Mechatronics, ICRoM 2013 ; Feb , 2013 , Pages 147-151 ; 9781467358118 (ISBN) Shahriari, M ; Zabihollah, A ; Sharif University of Technology
    2013
    Abstract
    Minimally Invasive Surgery (MIS) is getting common these days. MIS robots using special tools can perform surgery precisely as humans. This is only possible with dexterous end-effectors and a well-controlled system. Local, lightweight and powerful actuators positioned at end-effectors provide the ability to decrease the degrees of freedom and simplify the design. This paper discusses a grasper design actuated by Shape Memory Alloy (SMA) wires that can be used in MIS robotics. The properties of a commercially available shape memory alloy are explored and analytical formulations for the actuation procedure are developed. The grasper actuated by SMA wires is studied and the procedure of... 

    Conceptual design of a micro gripper with electrostatic micro stepper-motor actuation

    , Article Life Science Journal ; Volume 10, Issue SUPPL 8 , 2013 , Pages 290-293 ; 10978135 (ISSN) Shadbakhsh, F ; Shahriari, M ; Zabihollah, A ; Sharif University of Technology
    2013
    Abstract
    Micro grippers are essential tools for manipulation of objects in micron size. An electrostatic micro stepper-motor is used for actuating a proposed gripper mechanism and performance of this gripper is compared with the previous ones. The characteristic of the proposed mechanism is analyzed by simulation and it is shown that the designed gripper has the capability of doing manipulation in micron dimension with an acceptable performance  

    Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 4 , 2012 , Pages 1179-1196 ; 1738494X (ISSN) Sarrafan, A ; Zareh, S. H ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feedforward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse... 

    Intelligent vibration control of micro-cantilever beam in MEMS

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011, Istanbul ; April , 2011 , Pages 336-341 ; 9781612849836 (ISBN) Sarrafan, A ; Zareh, S. H ; Zabihollah, A ; Khayyat, A. A ; Sharif University of Technology
    2011
    Abstract
    Considerable attention has been devoted recently to vibration control using intelligent materials as sensor/actuator. An intelligent control technique using a neural network is proposed for vibration control of micro-cantilever beam with bonded piezoelectric sensor and actuator. Structure modal characteristic analysis is done to determine the optimal configuration of piezoelectric sensor and actuator. With the piezoelectric elements are surface-bonded near the same position to the fixed end of micro-cantilever beam, an optimal controller, linear quadratic Gaussian (LQG), and an intelligent strategy based on neural network are investigated. Finally, the simulation results are given to... 

    Performance of an offshore platform with MR dampers subjected to wave

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011 ; April , 2011 , Pages 242-247 ; 9781612849836 (ISBN) Sarrafan, A ; Hamid Zareh, S ; Khayyat, A. A ; Zabihollah, A ; Sharif University of Technology
    2011
    Abstract
    The vibration suppression of semi-actively controlled jacket-type offshore platforms using Magnetorheological (MR) dampers is studied. The main goal of using MR damper system is to reduce vibration caused by wave hydrodynamic forces. A fixed jacket-type offshore platform affected by wave-induced hydrodynamic forces and controlled by MR dampers is modelled as a semi-active controlled system with 30 DOFs. In comparison with earlier studies, an improvement in problem modelling is made. Based on the wave theory and Morison equation, an exosystem is designed to simulate regular wave forces. The necessary input voltage to MR dampers to generate desired damping force is derived by clipped optimal... 

    A computational model for health monitoring of storage tanks using fiber Bragg grating optical fiber

    , Article Journal of Civil Structural Health Monitoring ; Volume 1, Issue 3-4 , 2011 , Pages 97-102 ; 21905452 (ISSN) Sarkandi, G. I ; Zabihollah, A ; Sharif University of Technology
    Abstract
    Storage tanks are always under different hazards such as corrosion and leaking. In this work we have introduced a computational analysis on storage tanks in which a real-time yet efficient monitoring technique using Fiber Bragg Grating (FBG) sensors for corrosion detection on the bottom plate and vibration monitoring on outer surfaces of storage tanks is proposed. A finite element model for the tank is developed, in which the outer tanks surfaces are considered as plate elements and FBG sensors as beam elements. An array of FBG sensors is utilized to compute the generated strain in the FBGs due to losing thickness in the tank's bottom plate and due to vibration on the outer surfaces in... 

    Monitoring pipeline vibration due to cavitation through an orifice by piezoelectric sensor

    , Article Advanced Materials Research ; Volume 403-408 , 2012 , Pages 3418-3423 ; 10226680 (ISSN) ; 9783037853122 (ISBN) Rad, F. P ; Zabihollah, A ; Sharif University of Technology
    Abstract
    Pipelines are one of the most important and efficient ways for transporting energy like water, gas, oil and etc. between different places all across the world. As these pipelines are located in different conditions and situations, they are all sensitive to a wide variety of damages like vibration, so monitoring their structural behavior is an essential task. Monitoring pipeline vibration caused by cavitation through an orifice by a piezoelectric sensor is presented in this paper  

    Crack detection in underground pipelines using piezoelectric sensors

    , Article Advanced Science Letters ; Volume 19, Issue 3 , 2013 , Pages 770-774 ; 19366612 (ISSN) Nozarian, M. M ; Adeldost, H ; Zabihollah, A ; Sharif University of Technology
    2013
    Abstract
    Regarding the structural health monitoring of pipelines, early detection of cracks may be one of the possible ways to prevent future failures. Among the detection methods which have been known, one is to measure the vibration signals generated due to the hydraulics of pipe. This article discusses application of thin film piezo sensors mounted directly on the pipe. The vibration induced strain is transuded into electric voltage by the piezoelectric sensor. The recorded signals are used for PSD analysis which indicates that this method can be used as an accurate and cost effective detection. Moreover the promising results from the respective experiments on pipes indicated that second natural... 

    Layerwise theory in modeling of magnetorheological laminated beams and identification of magnetorheological fluid

    , Article Mechanics Research Communications ; Volume 77 , 2016 , Pages 50-59 ; 00936413 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In recent years, structures integrated with magnetorheological (MR) fluid have been considered for their tunable dynamic characteristics. Shear modulus of MR layer in composite structure is dramatically lower than the elastic layers, leading to high shear deformation inside the MR layer, thus classical theories are not accurate enough to predict the dynamic behavior of such structures. In present study a layerwise displacement theory has been utilized to predict a more accurate deformation for MR-composite beam and equation of motions derived using finite element model (FEM). ASTM E756-98 was employed to evaluate the complex shear modulus of MR fluid. By experimental test a practical... 

    Vibration behavior of laminated composite beams integrated with magnetorheological fluid layer

    , Article Journal of Mechanics ; 2016 , Pages 1-9 ; 17277191 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Cambridge University Press 
    Abstract
    Vibration behavior of adaptive laminated composite beams integrated with magnetorheological (MR) fluid layer has been investigated using layerwise displacement theory. In most of the existing studies on the adaptive laminated beams with MR fluids, shear strain across the thickness of magnetorheological (MR) layer has been assumed a constant value, resulting in a constant shear stress in MR layer. However, due to the high shear deformation pattern inside MR layer, this assumption is not adequate to accurately describe the shear strain and stress in MR fluid layer. In this work a modified layerwise theory is employed to develop a Finite Element Model (FEM) formulation to simulate the laminated...