Loading...
Search for: zoning
0.017 seconds
Total 373 records

    Response of concrete-filled polyethylene tubes under in-service thermal cycles in marine environments

    , Article Marine Structures ; Volume 85 , 2022 ; 09518339 (ISSN) Tabatabaeian, M ; Khaloo, A ; Azizmohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Concrete-filled polyethylene (PE) tubes (CFPT) are composite systems using the polyethylene tubes as confinement for the marine structures in the splash zone to extend the service life of structures subjected to harsh environments. However, thermal cycles in marine environments can affect the behavior of such composite systems. This paper evaluates the effect of concrete infill strength (30 MPa and 60 MPa), the number of thermal cycles (50, 100, and 150 cycles) ranging from 25 °C to 60 °C, and thermal cycle type (type A and B) on the compressive and bond response of CFPTs. Characteristics of control and conditioned concrete infill, PE tubes, and CFPTs were obtained by means of compression... 

    Obtaining strain-rate dependent traction-separation law parameters of epoxy adhesive joints and predicting fracture for dissimilar bonding adherends

    , Article International Journal of Adhesion and Adhesives ; Volume 118 , 2022 ; 01437496 (ISSN) Darvishi, I ; Nourani, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigated the mode I fracture behavior of double cantilever beam (DCB) epoxy adhesive joints with similar adherends on the both sides (i.e., aluminum-aluminum or copper-copper) at different strain rates; i.e., quasi-static (∼10−3 s−1), low (∼7 s−1) and intermediate (∼14 s−1) rates. The fracture energy of the DCB joint in Al-adhesive-Al specimens decreased (i.e., by ∼62%, p = 0.0013) with an increase in the applied strain rate from quasi-static to low values, while it remained almost unchanged with further increase of stain rate to intermediate range (p > 0.05). For Cu-adhesive-Cu cases, however, the fracture energy was found to be almost insensitive to the applied strain rate... 

    Friction stir welding of severely plastic deformed aluminum using (Al2O3+ graphite) hybrid powders: Grain structure stability and mechanical performance

    , Article Journal of Materials Research and Technology ; Volume 21 , 2022 , Pages 961-980 ; 22387854 (ISSN) Moosavi, S. E ; Movahedi, M ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    Welding of severely plastic deformed aluminum sheets, with high stored strain energy, faces a serious concern, which is decrease in strength of weld and heat-affected zone (HAZ) due to instability in microstructure and related grain growth. In this work, two-passes constrained groove pressed (CGPed) Al-1050 sheets were welded via friction stir welding (FSW), without and with addition of a hybrid powder including 50 vol.% α-Al2O3 nanoparticles+50 vol.% graphite micrometric powders (∼1 vol.% of hybrid powders in stir zone). Al2O3 nanoparticles may result in grain refinement in stir zone by grain boundary pinning. Lubricating nature of graphite may reduce welding heat input resulting in lower... 

    Microstructure, fractography, and mechanical properties of hardox 500 steel tig-welded joints by using different filler weld wires

    , Article Materials ; Volume 15, Issue 22 , 2022 ; 19961944 (ISSN) Zuo, Z ; Haowei, M ; Yarigarravesh, M ; Assari, A. H ; Tayyebi, M ; Tayebi, M ; Hamawandi, B ; Sharif University of Technology
    MDPI  2022
    Abstract
    This paper deals with the effects of three low-carbon steel filler metals consisting of ferritic and austenitic phases on the weld joints of the tungsten inert gas (TIG) welding of Hardox 500 steel. The correlation between the microstructure and mechanical properties of the weld joints was investigated. For this purpose, macro and microstructure were examined, and then microhardness, tensile, impact, and fracture toughness tests were carried out to analyze the mechanical properties of joints. The results of optical microscopy (OM) images showed that the weld zones (WZ) of all three welds were composed of different ferritic morphologies, including allotriomorphic ferrite, Widmanstätten... 

    Conventional vs. temperature-gradient transient liquid phase bonding of stainless steel 304 using a multi-component (Fe–Ni–Mo–B) filler metal

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 11 , 2022 , Pages 4081-4100 ; 10735623 (ISSN) Jabbari, F ; Ekrami, A ; Sharif University of Technology
    Springer  2022
    Abstract
    The application of the multi-component Fe-based filler metals (FMs) for transient liquid phase (TLP) bonding of AISI 304 austenitic stainless steel has been overshadowed by dissimilar interlayers merely due to their shorter isothermal solidification time. However, the latter usually suffers from low efficiency in terms of mechanical properties even after homogenization of heat treatment. This study shows that by imposing a temperature gradient across the bond line during the TLP bonding process (TG-TLP), it is possible to reduce the isothermal solidification time significantly. This renews the interest in utilizing multi-component Fe-based FMs. In this regard, the TG-TLP bonding process was... 

    Nonlinear finite element analysis and parametric study of executable RCS connections

    , Article Archives of Civil and Mechanical Engineering ; Volume 22, Issue 4 , 2022 ; 16449665 (ISSN) Bakhtiari Doost, R ; Sadraie, H ; Khaloo, A ; Badarloo, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    This paper compares the results of a nonlinear finite element analysis (FEA) of an internal hybrid steel beam to RC column connections with those of the experiment on a half-scale. This study used extended face bearing plates (EFBP) embedded in the panel zone (PZ) to make prefabricated RC column to steel beam connections (PRCS). Steel beam flanges were made to be stronger than scaled sections to transfer more force to the PZ. Nonlinear FEA was performed with ABAQUS software to evaluate the connections under unidirectional loading. Failure mode, connection stiffness, and PZ shear strength determined by nonlinear FEA matched well with the experimental findings. PRCS1 model was used to evaluate... 

    simulation of thermo-hydro-mechanical processes at Soultz-sous-Forêts

    , Article Energies ; Volume 15, Issue 24 , 2022 ; 19961073 (ISSN) Mahmoodpour, S ; Singh, M ; Mahyapour, R ; Tangirala, S. K ; Bär, K ; Sass, I ; Sharif University of Technology
    MDPI  2022
    Abstract
    Porosity and permeability alteration due to the thermo-poro-elastic stress field disturbance from the cold fluid injection is a deciding factor for longer, more economic, and safer heat extraction from an enhanced geothermal system (EGS). In the Soultz-sous-Forêts geothermal system, faulted zones are the main flow paths, and the resulting porosity–permeability development over time due to stress reorientation is more sensitive in comparison with the regions without faulted zones. Available operational and field data are combined through a validated numerical simulation model to examine the mechanical impact on the pressure and temperature evolution. Results shows that near the injection... 

    Improving appearance and mechanical strength of aluminum-polypropylene/talc composite friction stir joint using a novel tool design

    , Article International Journal of Advanced Manufacturing Technology ; Volume 121, Issue 5-6 , 2022 , Pages 3717-3730 ; 02683768 (ISSN) Shiravi, H ; Movahedi, M ; Ozlati, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, friction stir joining of aluminum-polypropylene/talc composite was investigated due to the numerous applications of aluminum-polymer joints in automotive and aerospace industry. A novel tool design, including a rotary/stationary holder, was used to improve the appearance and mechanical performance of friction stir lap joints by preventing the mixed molten polymer and aluminum particles from exiting the stirred zone. Effect of tool transverse speed on the joint microstructure and strength was investigated. Using the rotary/stationary holder, tensile-shear strength of the joints increased (by ~ 45 to ~ 220% at various transverse speeds). Since during the tensile-shear test... 

    Effect of hybridization on crystallization behavior, mechanical properties, and toughening mechanisms in rubber-modified polypropylene flax fiber composites

    , Article Journal of Composite Materials ; Volume 56, Issue 17 , 2022 , Pages 2677-2693 ; 00219983 (ISSN) Bahrami, R ; Bagheri, R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Nowadays, the significance of sustainability has urged composite manufacturers to replace traditional synthetic fibers with eco-friendly natural alternatives due to their environmental and economic benefits. This work aims to fabricate hybrid polypropylene (PP) composites with short flax fibers, octene-ethylene copolymer (POE) rubber particles, and maleic anhydride-grafted polypropylene (MAPP) compatibilizer. The main goal is to gain an insight into the combined effect of toughening mechanisms induced by the short fibers and rubber particles at the crack tip and wake of composites, which is a crucial step in reaching a balance between toughness and rigidity. In this regard, a novel... 

    Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Setayeshmehr, M ; Kiani, M ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight. Here, graphene oxide (GO) was synthesized, grafted to chitosan, and decorated with silver nanoparticles (Ag NPs) to produce Ag-decorated reduced GO-graft-Chitosan (AGC) NPs. The blends of polyacrylonitrile (PAN) and AGC NPs were prepared in various concentrations of... 

    Assessing coalition in meeting environmental flow based on Shapley value and nash equilibrium: case study Aras River

    , Article International Journal of Environmental Science and Technology ; Volume 19, Issue 7 , 2022 , Pages 6521-6530 ; 17351472 (ISSN) Rashidi, M ; Zarghami, M ; Pishbahar, E ; Fallahi, F ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Water allocation is a process of identifying the stakeholders, assessing the amount of water they need, and estimating the volume of renewable water resources. This study investigates the coalition possibilities among the riparian in the Aras River as a transboundary basin over-allocating the environmental flow share. To this end, first, the environmental flow is estimated downstream of the basin based on the annual potential runoff. Then, to estimate the agricultural production function in each country, the relationship between the agriculture value-added and the variables like annual potential runoff and capital in the agricultural sector is derived using the seemingly unrelated regression... 

    Investigation of flame structure and precessing vortex core instability of a gas turbine model combustor with different swirler configurations

    , Article Physics of Fluids ; Volume 34, Issue 8 , 2022 ; 10706631 (ISSN) Mardani, A ; Asadi, B ; Beige, A. A ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Numerical simulation of a dual-swirl gas turbine model combustor is performed under cold and reacting flow conditions using a three-dimensional unsteady Reynolds-averaged Navier-Stokes approach. A multi-species chemical mechanism is used in this study for the analysis of the numerous radicals participating in the ignition process and the flame structure. The other objective of this study is to investigate the flow field under different injector configurations, including both co-rotating and counter-rotating swirler arrangements, different swirl intensities, and vane areas. A comparison of the results with experimental data shows that the predicted velocity and temperature profiles follow the... 

    Amoxicillin-loaded multilayer pullulan-based nanofibers maintain long-term antibacterial properties with tunable release profile for topical skin delivery applications

    , Article International Journal of Biological Macromolecules ; Volume 215 , 2022 , Pages 413-423 ; 01418130 (ISSN) Ajalloueian, F ; Asgari, S ; Guerra, P. R ; Chamorro, C. I ; Ilchenco, O ; Piqueras, S ; Fossum, M ; Boisen, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Unique physiochemical and biological properties of nanofibers along with the choice of a wide variety of materials for both fabrication and tunable release patterns make nanofibers an ideal option for drug delivery. Loading antibacterial agents into nanofibers has attracted great deal of attention. Whilst there are several studies focusing on applying new generations of antibacterial materials, antibiotics are still the gold standard in clinical applications. Therefore, we aimed at introducing antibiotic-loaded nanofiber substrates with potential for topical skin delivery applications, reduced consumption of antibiotics and increased storage time. We applied Amoxicillin (AMX) as a model drug... 

    Laser welding of titanium grade 2 and aluminium AA 3105-O using a new AlScZr filler metal

    , Article Lasers in Manufacturing and Materials Processing ; Volume 9, Issue 1 , 2022 , Pages 37-55 ; 21967229 (ISSN) Shehab, A. A ; Sadrnezhaad, S. K ; Alali, M ; Fakouri Hasanabadi, M ; Torkamany, M. J ; Abass, M. H ; Mahmoud, A. K ; Kokabi, A. H ; Sharif University of Technology
    Springer  2022
    Abstract
    In this study, a pulsed Nd:YAG laser welding method is implemented to join Ti-G2 (1 mm thick) to AA3105-O (0.5 mm thick) via a ring of spots filled with AlScZr alloy (0.15 mm thick). The filler material improved the weld’s microstructure and mechanical properties by reducing the undesirable intermetallic compounds (IMCs) such as TiAl2 and TiAl3 in the aluminium re-solidified zone near the titanium/aluminium interface. The joints having AlScZr filler were mostly failed at Al heat affected zone (HAZ) during the tensile shear test. The addition of zirconium to binary Al–Sc system formed a substitutional solid-solution in which 50 wt% Zr+10 wt% Ti replaced Al3(Sc,Zr,Ti). Scandium had a... 

    Investigating the behavior of cracks in welded zones of supporting structure of spherical pressure vessel under seismic loading

    , Article Journal of Constructional Steel Research ; Volume 191 , 2022 ; 0143974X (ISSN) Tafazoli, S ; Ghazi, M ; Adibnazari, S ; Rofooei, F. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the numerical studies on the semi-elliptical crack behavior in different locations of welded zones in the supporting structure of a spherical pressure vessel under an earthquake are presented. The cracks in the welded zones of supporting structures under earthquake effects may jeopardize the safety of spherical pressure vessels and result in catastrophic failure. A detailed finite element sub-modeling technique is carried out to compute the mixed-mode stress intensity factors along the crack front. Furthermore, crack behavior with different aspect ratios a/c: 0.25, 0.5, and 0.75 at the weld and the heat-affected zone of the supporting structure is evaluated. The... 

    Microstructural and mechanical evaluations of SAW by manufactured granular basic bonded Cr, Mo, and Cr–Mo active fluxes on ST37 low carbon steel

    , Article International Journal of Advanced Manufacturing Technology ; Volume 119, Issue 9-10 , 2022 , Pages 6335-6347 ; 02683768 (ISSN) Alishavandi, M ; Mohammadmirzaei, M ; Ebadi, M ; Kokabi, A. H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Abstract: Bead-on-plate submerged arc welding was conducted on St37 steel by manufactured Cr, Mo, and Cr–Mo active basic fluxes produced via the unfused bonded method. The base metal heat-affected zone and weld metal (WM) microstructures were identified and characterized by optical microscopy and scanning electron microscopy. Furthermore, each element’s recovery rate (η) and slag factor (α) determine the amount of element transferred from flux into WM. Then, the ferrite morphologies volume fraction of WMs was measured. Moreover, the chemical analysis of slag and inclusions was evaluated by point scan energy-dispersive X-ray spectroscopy and extensively discussed. The number density and... 

    Quantifying lake–aquifer water exchange: the case of Lake Urmia, Iran

    , Article Hydrological Sciences Journal ; Volume 67, Issue 5 , 2022 , Pages 725-740 ; 02626667 (ISSN) Parizi, E ; Hosseini, S. M ; Ataie Ashtiani, B ; Nikraftar, Z ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This study investigated the lake–aquifer hydraulic interactions in Lake Urmia (LU) as the second largest hypersaline lake in the world. Due to the scarcity of hydrogeological data required for modelling, a method based on Darcy’s Law and lake water budget was used to quantify the lake–aquifer interaction. Long-term ground- and satellite-based hydrological datasets over the time frame 2001–2019 were used. Results indicate that the groundwater flux between LU and the aquifers controls 18.74 ± 1.67% of the lake’s water storage. While 10 out of 14 adjacent aquifers recharge LU at a rate of less than 180 m3/m.month, one phreatic aquifer recharges the LU up to 1400 m3/m.month. Two aquifers are... 

    Geometry influence on fracture behavior of lap-shear solder joints

    , Article IEEE Transactions on Components, Packaging and Manufacturing Technology ; Volume 12, Issue 1 , 2022 , Pages 80-88 ; 21563950 (ISSN) Karimi, M ; Nourani, A ; Honarvar, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Single lap-shear (SLS) specimens of 63Sn37Pb solder joints were prepared with three different adherend thicknesses at three varying joint lengths. The fracture force was measured at a shear strain rate of 0.01 s-1 for different geometries. The elastic-plastic fracture mechanics (EPFM) theory was used to find the energy dissipated in each case using a finite element model (FEM), and the fracture energy was obtained by cohesive zone modeling (CZM). Both 2-D and 3-D models were used to explain the variations in fracture energy by the level of constraint on the joint. Also, the plastic zone area and stress distribution along the solder layer were calculated at the moment of fracture. A phase... 

    Drilled shafts in sand: failure pattern and tip resistance using numerical and analytical approaches

    , Article International Journal of Geotechnical Engineering ; Volume 16, Issue 8 , 2022 , Pages 974-990 ; 19386362 (ISSN) Jazebi, M ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Drilled shafts are one of the most important types of pile foundations. Several researchers have suggested different soil failure patterns for driven piles; however, for drilled shafts, this issue is inadequately addressed in the literature. In this paper, a numerical approach was pursued to obtain the location and dimensions of plastic zones around the tip of drilled shafts. The dependence of the suggested failure pattern size on the soil properties and drilled shaft dimensions was investigated. Based on several analyses, a soil jug-shaped failure pattern around the tip of drilled shafts was proposed, and its dimensions were determined using the regression-based and trial and error... 

    On the inability of the moving interface model to predict isothermal solidification time during transient liquid phase (TLP) bonding of ni-based superalloys

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 1 , 2022 , Pages 126-135 ; 10735623 (ISSN) Pouranvari, M ; Ghasemi, A ; Salmasi, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Understanding diffusion-induced isothermal solidification time during transient liquid phase bonding is vital in producing intermetallic-free robust joints. The isothermal solidification completion time is overestimated by the existing analytical models, even by the closest one to the real bonding conditions, known as the moving interface model. It was found that the boride formation in the diffusion affected zone of Ni-based superalloy upon using B-containing filler metals is one of the reasons behind the inability of the moving interface model to predict the isothermal solidification completion time accurately, which has received scant attention in the literature. Moreover, simplified...