Loading...
Search for: khatibi--m
0.09 seconds

    Fault-Tolerant control of uncertain linear systems in the presence of L∞ disturbances and actuator saturation

    , Article 4th International Conference on Control, Instrumentation, and Automation, 27 January 2016 through 28 January 2016 ; 2016 , Pages 307-312 ; 9781467387040 (ISBN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper the fault-Tolerant control problem for uncertain linear systems in the presence of L, disturbances and actuator saturation is studied. The conflict between enlarging the domain of attraction and attenuating the effect of L, disturbances is tackled by proposing a non-constant state feedback controller. The feedback gains are calculated off-line by using linear matrix inequalities. In addition, the proposed method is capable of tolerating time-varying faults. The suggested approach is implemented on a sample model and the result is compared with other works  

    Fault-tolerant control considering time-varying bounds on faults

    , Article Transactions of the Institute of Measurement and Control ; Volume 40, Issue 10 , 2018 , Pages 2982-2990 ; 01423312 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This paper presents a novel fault-tolerant control strategy to compensate the time-varying loss of actuators’ effectiveness. It considers intermediate situations where the fault is not determined precisely (unlike active approaches) but overall estimations about its rate and final value are available through the previous experiences and/or experiments. Based on the estimations, two upper and lower time-varying bounds on the actuators’ effectiveness are established to be exploited in the procedure of controller design. In a special case, where these bounds are constant, the method will be reduced to the conventional passive approach. Also, actuator saturation and the effects of (Formula... 

    A unified framework for passive–active fault-tolerant control systems considering actuator saturation and L∞ disturbances

    , Article International Journal of Control ; 2017 , Pages 1-11 ; 00207179 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    2017
    Abstract
    This paper presents a unified passive–active fault-tolerant control strategy to compensate the loss of actuators’ effectiveness. The proposed approach is capable of handling the system in pre- and post-fault diagnosis intervals by passive and active approaches, respectively. The stability of the designed system is independent of the accuracy of information provided by the fault detection and diagnosis unit, however, a precise estimation could improve the conservation. Actuator saturation and L∞ disturbances effects are considered in the design stage. The trade-off between maximising the domain of attraction and minimising the effects of L∞ disturbances is tackled by developing a non-constant... 

    A unified framework for passive–active fault-tolerant control systems considering actuator saturation and L ∞ disturbances

    , Article International Journal of Control ; Volume 92, Issue 3 , 2019 , Pages 653-663 ; 00207179 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This paper presents a unified passive–active fault-tolerant control strategy to compensate the loss of actuators’ effectiveness. The proposed approach is capable of handling the system in pre- and post-fault diagnosis intervals by passive and active approaches, respectively. The stability of the designed system is independent of the accuracy of information provided by the fault detection and diagnosis unit, however, a precise estimation could improve the conservation. Actuator saturation and L ∞ disturbances effects are considered in the design stage. The trade-off between maximising the domain of attraction and minimising the effects of L ∞ disturbances is tackled by developing a... 

    Mimicking the Hadamard discrete-time quantum walk with a time-independent Hamiltonian

    , Article Quantum Information Processing ; Volume 18, Issue 5 , 2019 ; 15700755 (ISSN) Khatibi Moqadam, J ; de Oliveira, M. C ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The discrete-time quantum walk dynamics can be generated by a time-dependent Hamiltonian, repeatedly switching between the coin and the shift generators. We change the model and consider the case where the Hamiltonian is time-independent, including both the coin and the shift terms in all times. The eigenvalues and the related Bloch vectors for the time-independent Hamiltonian are then compared with the corresponding quantities for the effective Hamiltonian generating the quantum walk dynamics. Restricted to the non-localized initial quantum walk states, we optimize the parameters in the time-independent Hamiltonian such that it generates a dynamics similar to the Hadamard quantum walk. We... 

    Generation of transfer functions of subsystems using the test results of the whole system

    , Article Conference Proceedings of the Society for Experimental Mechanics Series, 9 February 2009 through 12 February 2009 ; 2009 ; 21915644 (ISSN) ; 9781605609614 (ISBN) Saadat Foumani, M ; Albooyeh, A. R ; Ashory, M. R ; Khatibi, M. M ; Sharif University of Technology
    2009
    Abstract
    This paper presents a new experimental-numerical method for deriving the transfer functions of a half-automobile model, containing: chassis, body, engine, engine mount and steering wheel, with five degrees of freedom. In this method different parts of system are not required to be disassembled from the main system and the transfer functions of subsystem are obtained through testing of the whole system. This method is based on the experimental results and does not need a mathematical model of the half-automobile. In this method, transfer functions of various parts of chassis are calculated through obtaining the response of secondary elements mounted on the chassis to the displacement input... 

    Fault Tolerant Control Considering Actuator Saturation and External Disturbances

    , Ph.D. Dissertation Sharif University of Technology Khatibi, Mahmood (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    A control system capable of tolerating system malfunctions while maintaining an acceptable level of performance is referred as fault tolerant control system. The constraints on the amplitude of input control signals limit the domain of attraction even for linear models. Ignoring this fact may lead to an unsatisfactory performance and even closed loop instability. Designing the controller such that the domain of attraction is maximized has been an attractive topic for researchers. On the other hand, persistent disturbances always play an essential role in the real word systems. Designing the controller in a way such that the effect of such disturbances is attenuated is another challenging... 

    Development of Regional Rainfall-Runoff Models

    , M.Sc. Thesis Sharif University of Technology Khatibi, Sahar (Author) ; Abrishamchi, Ahmad (Supervisor)
    Abstract
    Hydrological models are suitable tools for reduction of hydrological uncertainty in stream flow estimation. There are different historical approaches for the development of rainfall-runoff models, with regard to the choice of model structure and the calibration of the parameters, but the most attention has been focused on gauged catchments where sufficient data, in particular stream flow data, are available. So new modeling strategies for ungauged or pseudo ungauged catchments have been developed. This work was aimed to develop a methodology for the regionalization of some parameters of a conceptual rainfall-runoff model based on measurable physiographic, meteorological and even land... 

    Boundary-induced coherence in the staggered quantum walk on different topologies

    , Article Physical Review A ; Volume 98, Issue 1 , July , 2018 ; 24699926 (ISSN) Khatibi Moqadam, J ; Tayefeh Rezakhani, A ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    The staggered quantum walk is a type of discrete-time quantum-walk model without a coin which can be generated on a graph using particular partitions of the graph nodes. We design Hamiltonians for potential realization of the staggered dynamics on a two-dimensional lattice composed of superconducting microwave resonators connected with tunable couplings. The naive generalization of the one-dimensional staggered dynamics generates two uncoupled one-dimensional quantum walks; thus more complex partitions need to be employed. However, by analyzing the coherence of the dynamics, we show that the quantumness of the evolution corresponding to two independent one-dimensional quantum walks can be... 

    Aerodynamic Optimization of Axial Transonic Compressor Blade by Adjoint Method Using Bump/ Local Blowing

    , Ph.D. Dissertation Sharif University of Technology Khatibi Rad, Saeedeh (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Transonic flow compressors are widely used today. In these systems, the occurrence of shock waves, interaction of the shock and the boundary layer, thickening of the boundary layer and separation are some challenges which can severely affect the aerodynamic performance. Here we use a numerical analysis and an optimization algorithm to optimize the aerodynamic shape of a transonic axial compressor blade section. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find the new blade section shape. Application of three different geometric modelling of a compressor blade section... 

    Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 1626-1636 ; 09601481 (ISSN) Khatibi, M ; Khorasheh, F ; Larimi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    CaO derived from calcined eggshell was doped with Na–K by wet impregnation method and the effect of different Na/K molar ratios was investigated on biodiesel production from canola oil. The catalysts were characterized by X-ray Powder Diffraction (XRD), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Thermogravimetric (TGA) analyses. FAME yields were determined by Gas Chromatography-Mass Spectrometry (GC-MS). The Na–K/CaO catalyst with Na/K molar ratio of 1 showed the highest FAME yield of 97.6% at optimum reaction conditions. Structural investigation of materials revealed that FAME yield was proportional to the number of basic sites on... 

    Production of Biodiesel Using Eggshell as Catalyst

    , M.Sc. Thesis Sharif University of Technology Khatibi, Maryam (Author) ; Khorasheh, Farhad (Supervisor) ; Larimi, Afsaneh Sadat (Supervisor)
    Abstract
    The aim of this project is to investigate and synthesize CaO-based nanocatalysts derived from chicken eggshell calcination with alkali metals and sodium-potassium compounds promoters used in the transesterification reaction of canola oil and methanol. Sections of this thesis include the synthesis of nanocatalysts, catalyst characterization tests, and investigation of reaction under optimal conditions. Two groups of catalysts containing different weight percentages of alkali metals based on CaO and 1 %wt sodium-potassium based on CaO with different weight percentages of these two elements were synthesized by wet impregnation method and used in the reaction under optimum condition. Catalyst... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function... 

    Detection-localization tradeoff in MIMO radars

    , Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) Nazari Majd, M ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance... 

    Choosing the position of the receiver in a MISO passive radar system

    , Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) Chitgarha, M. M ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    2012
    Abstract
    By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only... 

    Improving MIMO radar's performance through receivers' positioning

    , Article IET Signal Processing ; Volume 11, Issue 5 , 2017 , Pages 622-630 ; 17519675 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    Institution of Engineering and Technology  2017
    Abstract
    By employing the MIMO (multiple-input-multiple-output) technology in radar, some new problems emerged, that, in order to benefit the MIMO gains in radar, it was necessary to solve them suitably. One of such obstacles is determining the positions of receive antennas in a MIMO radar system with widely separated antennas (WS MIMO radar), since it is shown that the antennas' positions affect the whole system's performance considerably. In this study, a proper receivers' positioning procedure is proposed. To do this end, four criteria are developed based on the proposed MIMO detector and the MIMO ambiguity function. The simulations verify that the proposed positioning procedure improves the... 

    Ambiguity function based receiver placement in multi-site radar

    , Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite... 

    Ambiguity function of MIMO radar with widely separated antennas

    , Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas