Loading...
Search for: shamloo--a
0.122 seconds

    Green synthesis of silica nanoparticles from olive residue and investigation of their anticancer potential

    , Article Nanomedicine ; Volume 16, Issue 18 , 2021 , Pages 1581-1593 ; 17435889 (ISSN) Rezaeian, M ; Afjoul, H ; Shamloo, A ; Maleki, A ; Afjoul, N ; Sharif University of Technology
    Future Medicine Ltd  2021
    Abstract
    Graphical abstract

    Modeling of pressure-sensitive materials using a cap plasticity theory in extended finite element method

    , Article AMPT/ANMEOS Part 2 ; Volume 164-165 , 2005 , Pages 1248-1257 ; 09240136 (ISSN) Shamloo, A ; Azami, A. R ; Khoei, A. R ; Dobrzanski L ; Sharif University of Technology
    2005
    Abstract
    In this paper, a new computational technique based on the extended finite element method (X-FEM) is presented in elasto-plastic behavior of pressure-sensitive material. The cap plasticity model is employed within the X-FEM framework in numerical simulation of powder die pressing. The double-surface plasticity model includes a failure surface and an elliptical yield cap, which closes the open space between the failure surface and hydrostatic axis. The yield cap expands in the stress space according to a specified hardening rule. Application of the X-FEM in simulation of two phase plasticity continuums is presented in an incremental manner and the role of sub-elements in the partition of unity... 

    Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method

    , Article Materials Research Express ; Volume 6, Issue 11 , 2019 ; 20531591 (ISSN) Shamloo, A ; Kamali, A ; Bahrani Fard, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Three-dimensional porous scaffolds are essential in tissue engineering applications. One of the most conventional methods to form porosity in scaffolds is freeze-drying, which is not energy efficient and cost effective. Therefore in this work, it was experimentally investigated whether gelatin, with its unique mechanical properties and cell binding applications, could be used as a comprising polymer of scaffolds with porous structure made by the freeze-gelation method. Chitosan, gelatin and chitosan/gelatin scaffolds were fabricated by the freeze-gelation method and their behaviors, determined by analysis of scanning electron microscopy images, Fourier transform infrared spectroscopy,... 

    In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque

    , Article International Journal of Pharmaceutics ; Volume 559 , 2019 , Pages 113-129 ; 03785173 (ISSN) Shamloo, A ; Amani, A ; Forouzandehmehr, M ; Ghoytasi, I ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Coronary artery disease is the first cause of death across the world. Targeted delivery of therapeutics through controlled release of micro- and nano-particles remains a very capable approach to develop new strategies in treating restenosis and atherosclerotic plaques. In this research, to produce the arterial geometry, an image-processing was done using CT-scan images of a LAD coronary artery. After implementing the finite element mesh, the Fluid-Structure Interaction (FSI) simulation based on physiological boundary conditions was performed. Next, a Lagrangian description of particles dynamics in a non-Newtonian blood flow considering momentum equation of motion for each particle and the... 

    In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters

    , Article Chemical Engineering Communications ; 2020 Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties... 

    Improving the performance of a photonic PCR system using TiO2 nanoparticles

    , Article Journal of Industrial and Engineering Chemistry ; 2020 Amadeh, A ; Ghazimirsaeed, E ; Shamloo, A ; Dizani, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    Nucleic acid amplification using polymerase chain reaction (PCR) method has been widely used in different fields such as agricultural science, medicine, pathogen identification, and forensics to name a few. Today, it seems inevitable to have a robust, simple PCR system for diagnostics at the point-of-care (POC) level. Many photonic PCR systems have been proposed in the literature that benefit from plasmonic photothermal heating to achieve the common PCR thermal cycling. However, non-homogeneous temperature distribution is a challenge in some of them. In the present work, to achieve more efficient gene amplification, the effect of adding TiO2 nanoparticles has been investigated in a photonic... 

    Designing a new multifunctional peptide for metal chelation and Aβ inhibition

    , Article Archives of Biochemistry and Biophysics ; Volume 653 , 2018 , Pages 1-9 ; 00039861 (ISSN) Shamloo, A ; Asadbegi, M ; Khandan, V ; Amanzadi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    According to the Amyloid hypothesis, as the foremost scientific explanation for Alzheimer Disease (AD), the neuropathology of AD is related to toxic fragments of amyloid beta (Aβ) protein. Based on this hypothesis, an attractive therapeutic approach was demonstrated to identify multifunctional peptides able to modulate Aβ pathologies as the source of AD. On this premise, a bifunctional polypeptide based on the iAβ5p lead compound, was designed to inhibit Aβ aggregation and free metal ions. Herein, the efficacy of this novel drug in Zn2+ and Cd2+ ion chelation was examined through an integrated technique comprising combined Docking, QM, and MD simulations. MD relaxation of a set of probable... 

    Targeted drug delivery of microbubble to arrest abdominal aortic aneurysm development: a simulation study towards optimized microbubble design

    , Article Scientific Reports ; Volume 10, Issue 1 , 2020 Shamloo, A ; Ebrahimi, S ; Amani, A ; Fallah, F ; Sharif University of Technology
    Nature Research  2020
    Abstract
    Abdominal aortic aneurysm (AAA) is an irreversible bulge in the artery with higher prevalence among the elderlies. Increase of the aneurysm diameter by time is a fatal phenomenon which will lead to its sidewall rupture. Invasive surgical treatments are vital in preventing from AAA development. These approaches however have considerable side effects. Targeted drug delivery using microbubbles (MBs) has been recently employed to suppress the AAA growth. The present study is aimed to investigate the surface adhesion of different types of drug-containing MBs to the inner wall of AAA through ligand-receptor binding, using fluid-structure interaction (FSI) simulation by using a patient CT-scan... 

    Secondary flows, mixing, and chemical reaction analysis of droplet-based flow inside serpentine microchannels with different cross sections

    , Article Langmuir ; Volume 37, Issue 17 , 2021 , Pages 5118-5130 ; 07437463 (ISSN) Ghazimirsaeed, E ; Madadelahi, M ; Dizani, M ; Shamloo, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Chemical bioreactions are an important aspect of many recent microfluidic devices, and their applications in biomedical science have been growing worldwide. Droplet-based microreactors are among the attractive types of unit operations, which utilize droplets for enhancement in both mixing and chemical reactions. In the present study, a finite-volume-method (FVM) numerical investigation is conducted based on the volume-of-fluid (VOF) applying for the droplet-based flows. This multiphase computational modeling is used for the study of the chemical reaction and mixing phenomenon inside a serpentine microchannel and explores the effects of the aspect ratio (i.e., AR = height/width) of... 

    In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters

    , Article Chemical Engineering Communications ; Volume 208, Issue 7 , 2021 , Pages 976-992 ; 00986445 (ISSN) Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties... 

    Improving the performance of a photonic PCR system using TiO2 nanoparticles

    , Article Journal of Industrial and Engineering Chemistry ; Volume 94 , 2021 , Pages 195-204 ; 1226086X (ISSN) Amadeh, A ; Ghazimirsaeed, E ; Shamloo, A ; Dizani, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    Nucleic acid amplification using polymerase chain reaction (PCR) method has been widely used in different fields such as agricultural science, medicine, pathogen identification, and forensics to name a few. Today, it seems inevitable to have a robust, simple PCR system for diagnostics at the point-of-care (POC) level. Many photonic PCR systems have been proposed in the literature that benefit from plasmonic photothermal heating to achieve the common PCR thermal cycling. However, non-homogeneous temperature distribution is a challenge in some of them. In the present work, to achieve more efficient gene amplification, the effect of adding TiO2 nanoparticles has been investigated in a photonic... 

    Particles in coronary circulation: A review on modelling for drug carrier design

    , Article Materials and Design ; Volume 216 , 2022 ; 02641275 (ISSN) Forouzandehmehr, M ; Ghoytasi, I ; Shamloo, A ; Ghosi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Atherosclerotic plaques and thrombosis are chronic inflammatory complications and the main manifestations of cardiovascular diseases (CVD), the leading cause of death globally. Achieving non/minimal-invasive therapeutic means for these implications in the coronary network is vital and has become an interdisciplinary concern. Accordingly, smart drug delivery systems, specifically based on micro- and nanoparticles, as a promising method to offer non/minimal-invasive therapeutic mechanisms are under active research. Notably, computational models enable us to study, design, and predict treatment strategies based on smart drug delivery systems with less time and cost compared with conventional... 

    Neuronal cell navigation within a microfluidic device

    , Article Middle East Conference on Biomedical Engineering, MECBME ; 17-20 February , 2014 , pp. 261-264 Shamloo, A ; Sharif University of Technology
    2014
    Abstract
    In this study, the polarization and navigation of neuronal cells was studied in response to quantified gradients of nerve growth factor (NGF). To accomplish this, a microfluidic device was designed and fabricated to generate stable concentration gradients of biomolecules in a cell culture chamber within a 3D microenvironment. Numerical simulation was implemented to optimize the device geometry for generating a uniform concentration gradient of NGF which was found to remain stable for multiple hours. Neural Stem/ Progenitor Cell (NSCs) migration and differentiation was studied within this microfluidic device in response to NGF concentration and within a 3D environment of collagen matrix.... 

    Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis

    , Article Cytoskeleton ; Vol. 71, issue. 9 , 2014 , p. 501-512 Shamloo, A ; Sharif University of Technology
    2014
    Abstract
    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell... 

    Liquid-liquid equilibrium (LLE) data for ternary mixtures of {aliphatic+p-xylene+[EMpy][ESO 4]} at T=313.15K

    , Article Fluid Phase Equilibria ; Volume 332 , 2012 , Pages 48-54 ; 03783812 (ISSN) Kamankesh, A ; Vossoughi, M ; Shamloo, A ; Mirkhani, S. A ; Akbari, J ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Liquid-liquid equilibrium (LLE) data for the ternary systems (heptane. +. p-xylene. +. 1-ethyl-3-methylpyridinium ethylsulfate) and (n-octane. +. p-xylene. +. 1-ethyl-3-methylpyridinium ethylsulfate) were measured at . T=. 313.15. K and atmospheric pressure. The selectivity and aromatic distribution coefficients, calculated from the equilibrium data, were used to determine if this ionic liquid can be used as a potential extracting solvent for the separation of p-xylene from heptane and n-octane. The consistency of tie-line data was ascertained by applying the Othmer-Tobias and Hand equations  

    Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach

    , Article Journal of Magnetism and Magnetic Materials ; Volume 410 , 2016 , Pages 187-197 ; 03048853 (ISSN) Shamloo, A ; Pedram, M. Z ; Heidari, H ; Alasty, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling... 

    Investigation of the motion of fullerene-wheeled nano-machines on thermally activated curved gold substrates

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Bakhtiari, M. A ; Seifi, S ; Tohidloo, M ; Shamloo, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    The current study presents one of the first investigations in which the simultaneous effect of the curved gold substrates and temperature changes on C60 and C60-wheeled nano-machines’ migration was evaluated. For this aim, the cylindrical and concave substrates with different radii were chosen to attain the size of the most appropriate substrate for nano-machines. Results indicated that the chassis' flexibility substantially affected the nanocar's mobility. Nano-machines' deviation from their desired direction was adequately restricted due to selected substrate geometries (The cylindrical and concave). Besides, for the first time, the effect of the substrate radius changes on nano-machine's... 

    Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1703-1725 ; 19942060 (ISSN) Alishiri, M ; Ebrahimi, S ; Shamloo, A ; Boroumand, A ; Mofrad, M. R. K ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The use of external fields such as magnet and ultrasound to enhance the targeted drug delivery (TDD) by nano-microcarriers could be a potential method. In this research, the drug delivery of magnetic nanoparticles (NPs) coated nanoliposomes and microbubbles (MBs) to the atherosclerosis plaque was investigated under magnetic and ultrasound fields in terms of their adhesion to the plaque through ligand–receptor binding. The Halbach arrangement enhanced the surface density of nanoliposomes and MBs adhered to the plaque by ∼ (Formula presented.) and ∼ (Formula presented.), respectively. A focused transducer at the power of (Formula presented.) led to better drug delivery performance and caused ∼... 

    Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1703-1725 ; 19942060 (ISSN) Alishiri, M ; Ebrahimi, S ; Shamloo, A ; Boroumand, A ; Mofrad, M. R. K ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The use of external fields such as magnet and ultrasound to enhance the targeted drug delivery (TDD) by nano-microcarriers could be a potential method. In this research, the drug delivery of magnetic nanoparticles (NPs) coated nanoliposomes and microbubbles (MBs) to the atherosclerosis plaque was investigated under magnetic and ultrasound fields in terms of their adhesion to the plaque through ligand–receptor binding. The Halbach arrangement enhanced the surface density of nanoliposomes and MBs adhered to the plaque by ∼ (Formula presented.) and ∼ (Formula presented.), respectively. A focused transducer at the power of (Formula presented.) led to better drug delivery performance and caused ∼... 

    Modeling, simulation, and employing dilution–dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency

    , Article Bioprocess and Biosystems Engineering ; Volume 41, Issue 5 , 2018 , Pages 707-714 ; 16157591 (ISSN) Kashanian, F ; Masoudi, M. M ; Shamloo, A ; Habibi Rezaei, M ; Moosavi Movahedi, A. A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Miniaturized systems based on the principles of microfluidics are widely used in various fields, such as biochemical and biomedical applications. Systematic design processes are demanded the proper use of these microfluidic devices based on mathematical simulations. Aggregated proteins (e.g., inclusion bodies) in solution with chaotropic agents (such as urea) at high concentration in combination with reducing agents are denatured. Refolding methods to achieve the native proteins from inclusion bodies of recombinant protein relying on denaturant dilution or dialysis approaches for suppressing protein aggregation is very important in the industrial field. In this paper, a modeling approach is...